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Stability of Vortex Shedding Modes in the Wake of a Ring at Low Reynolds Numbers

T. Leweke, M. Provansal, and L. Boyer
Laboratoire de Recherche en Combustion, Unii ersite de Proi ence, Centre de Saint- Jerome, Seriice 252,

F-13397 Marseille Cedex 20, France
(Received 7 June 1993)

The vortex street behind a ring of circular cross section and large aspect ratio is investigated experi-
mentally. Different modes of annular and helical vortex shedding are identified by phase and frequency
measurements. Their stability domains overlap in a large interval in Reynolds number where mode
selection depends on initial conditions only. A new instability of the vortex shedding process involving
characteristic mode transitions has been observed. This instability can be explained in the context of a
Ginzburg-Landau model by a mechanism resembling formally the Eckhaus instability of spatially
periodic pat terns.

PACS numbers: 47.20.Ft, 47.20.Lz, 47.27.Cn, 47.27.Vf

The wake behind a circular cylinder, placed perpendic-
ular to a uniform stream, is generally considered as a
reference system for the study of the transition to tur-
bulence in open Bows. In recent years, much effort has
been put into the investigation of the first step of this
transition, the laminar vortex shedding at low Reynolds
numbers, known as the Karman vortex street. We have
shown experimentally in 1984 that this Benard- von
Karman instability can be modeled near the threshold by
a Stuart-Landau equation [I]. This was the first applica-
tion of such an amplitude equation to an open Aow sys-
tem. More recently we extended this model to three-
dimensional effects by using a complex Ginzburg-Landau
(GL) equation [2,3]. Experimental studies [4-8] had
shown the importance of 3D eAects —shedding of paral-
lel, inclined, or curved vortices, spanwise cells of different
shedding frequencies, or dislocations. It had been found
that end effects, always present in experiments, are not
negligible, even for long cylinders, and that they are re-
sponsible for most of the observed three dimensionalities.
The predictions of the GL model are in good agreement
with these experimental findings. This strong inhuence of
the end conditions on the vortex shedding led us to inves-

tigate the wake of a ring, i.e. , a bluff body of circular
cross section, but without any ends. In this Letter, we
present quantitative experimental results concerning the
regime of laminar vortex shedding behind a ring and an
interpretation in the frame of the Ginzburg-Landau mod-
el.

The experiments were carried out in a small low speed
wind tunnel, having a 25&25&100 cm test section. The
uniformity of the incoming How was better than 0.5% and
its turbulence level close to 0.1%. The ring, made of
brass with a nickel coating to ensure a smooth surface,
has a mean diameter D =56.9 mm and a thickness
d =3.03 mm (aspect ratio xD/d =59.0). It was held in a
plane perpendicular to the Aow at 15 cm from the entry
of the test section by four metal wires of diameter 0.08
mm, tightened by weights. Vibrations were monitored by
a sensitive laser-photodiode setup and it turned out that
they did not interfere with the Aow phenomena in the
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FIG. 1. Visualizations of isophase lines in the wake of a ring
of aspect ratio nD/d =59.0 at Re=108, corresponding to (a)
inclined vortex rings and (b) helical vortices of step 2X. Flow is

from right to left.

wake. Velocity measurements were made using two hot
wire sensors and a computer controlled mobile laser
Doppler anemometer (LDA). Visualizations were ob-
tained with the help of a circular smoke wire placed
upstream of the ring. The Reynolds number Re=Ud/v
is based on the free stream velocity U and the ring thick-
ness d, v being the cinematic viscosity of the Quid. Cylin-
drical coordinates (x,r, p), with the origin at the center of
symmetry of the ring and the x axis pointing in the down-
stream direction, will be used in the following.

Because of the periodic boundary conditions in the
spanwise direction p and the rotational symmetry of the
Aow problem, several different vortex configurations are
possible: an array of counterrotating vortex rings (ob-
served in Refs. [9-11])and pairs of counterrotating heli-
cal vortices with discrete helix steps of nk, where n is an
integer and X the streamwise wavelength of the vortex
street. Early evidence of a mode with n=1 in the wake
of a torus was given by Monson [9], and the existence of
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FIG. 2. Spanwise phase variation of the longitudinal velocity
fluctuation v in the ring wake for difIerent modes at Re=127.
h@=arg[v (xo, ro, p)] ar—g[v (xa, r0, 0)], with x0=3.96d, ro
=D/2+0. 83d. Mode labels as in Fig. 4.
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FIG. 3. Domains of stability of the diA'erent shedding modes
( ), with marginal stability limit (---) and "formation re-
gion stability" limit ( ), using Eq. (3) with Reo=49.2,
p/v =10, k =0.2, ci = —0.6, c2 = —3.0.

higher order modes was shown by Leweke, Provansal, and
Boyer [12]. Visualizations of two modes observed in the
present experiments can be seen in Fig. 1. The diAerent
modes can be characterized by the variation in the span-
wise direction of the phase @of the time-periodic velocity
Auctuations in the wake. The phase difference d,N(p)
=@(&p)—@(0) was obtained for a series of p from the
correlation function of the simultaneous velocity signals
from the mobile LDA point and a fixed hot wire serving
as a phase reference (see also caption of Fig. 2). Figure 2
shows A@(p) for all the modes observed in the present
configuration, from n = —2 to +3. The wake for n=3
consists of six interwoven helical vortices. The almost
sinusoidal phase variation of the mode 0 results from the
slight inclination of the vortex rings with respect to the
body.

It has to be pointed out that each mode is stable in a
large domain in Reynolds number, as visible in Fig. 3,
and that between Re =80 and 154 all modes are possible.
The mode selection in regions where several modes can
exist depends only on initial conditions. In the experi-
ments, modes could be forced with a reasonable repeata-
bility by short but violent transverse perturbations of the
incoming How, created by means of strong air jets. The
fact that the mode n = —3 or modes with even higher

~
n

~

were not observed in the present experiments may be due
to the difhculty of creating suitable initial conditions.

It is known from experiments on circular cylinder
wakes (see, e.g. , [6]) that the shedding frequency f at a
given Reynolds number is a function of the shedding an-
gle 0. The same behavior is observed in the ring wake.
The Strouhal number S =fd/U was determined as a
function of the Reynolds number for all the modes in the
laminar regime using a hot wire and a standard spectrum
analyzer to determine f. The result is shown in Fig. 4(a).
The Strouhal number decreases with increasing mode
number ~n~, i.e., with increasing shedding angle. It is
worth noticing that the frequency laws of all the laminar
modes are continuous due to the absence of end eAects,
which could cause discontinuities in the S-Re relationship

in the case of a circular cylinder [6,7].
Figure 4(b) shows the same data after application of

the transformation S S/cosO used by Williamson [6]
and which is, to a good approximation, also included in
the Ginzburg-Landau model [2]. As in the case of a
straight cylinder the transformed frequency laws of the
ring wake collapse to one single curve, despite the pres-
ence of a body curvature. The mean shedding angle 0
used for the transformation was obtained from the
streamwise wavelength k of the wake, which had been
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FIG. 4. Frequency laws: Strouhal number S vs Reynolds
number Re, (a) as measured and (b) transformed by the cosO
law. Modes; O: 0; a: + 1; ~: —1; n +2- 0: —2- W. +3-
transition;: parallel shedding behind a straight cylinder
(from [6]).
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FIG. 5. Transition from mode —2 to mode 0 after a change
in Reynolds number from Re=66.6 to 65.2 at t=0: time evolu-
tion of the diAerence hN between the phases of the longitudinal
velocity fluctuation at two points in the wake, chosen to have
M&(t =0) =tr/2 for reasons of signal processing.

FIG. 6. Growth rate a„ofthe instability of the helical vortex
patterns, determined from measurements as in Fig. 5. Negative
growth rates were found by letting the instability grow with
Re & Re„and by switching to Re & Re„before the initial mode
broke down. Labels of the initial mode as in Fig. 4.

measured as a function of Re for all the modes. For the
helical modes, the helix angle &=tan '(nVtrD) is used.
For the inclined vortex ring mode, the shedding angle
varies approximately as sin(p —pp) (see Fig. 2). For this
mode we use a mean absolute value of 0 given by
8=tan '[X(he,„—Ae;, )/tr D].

Figure 4(b) shows that the frequencies of parallel shed-
ding behind the ring seem to be slightly lower than in the
case of a straight cylinder, a feature already noticed by
Roshko [13]. However, the differences between the two
curves are of the same order as the experimental uncer-
tainties.

When increasing the Reynolds number, the higher or-
der helix modes show a tendency to remain stable longer
than the lower order or vortex ring modes. When passing
the upper Re stability limit in a low order mode, the wake
switches abruptly to a transition mode, characterized by a
loss of the wake periodicity and a less pronounced peak in

the velocity spectra. In the range between Re=154 and
185, the wake then stays in this mode during a random
time interval before restabilizing in a higher order mode
which is still stable at the new Reynolds number.

When decreasing Re, the helix modes become unstable
below a critical Reynolds number Re„,which itself in-
creases with lnl, . The transition of a helix mode n to a
new configuration when passing its stability limit Re„
happens in a very characteristic way. This is illustrated
for the transition —2 0 in Fig. 5 where the evolution of
the phase diAerence 6@ of the velocity at two points in

the wake after a step change in Re from above to below
critical is shown. h@ was obtained from the signals of
two fixed hot wires and an analog phase meter. After the
change in Re the phase diA'erence, initially a constant, be-
gins to oscillate with an exponentially growing amplitude
until the initial mode breaks down and the wake reorgan-
izes in a different mode with lower ~!n~! and a phase
diAerence which is again a constant. It is worth noting
the time scales involved. For the case shown in Fig. 5 the
transition takes about 2 min, i.e., almost 2000 shedding

—l(1+ic2)!A! A,
with periodic boundary conditions in the spanwise direc-
tion p:

(2)A (p =0, t ) =A (p = 2tr, t ) .

2 is the complex amplitude of the velocity fluctuations,
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cycles in the present case. During this process, the ampli-
tude of the velocity oscillation remains practically un-

changed. At the same time the velocity spectra exhibit
r

sideband peaks at the combinations between the Karman
and phase fluctuation frequencies. The latter is of the
same order of magnitude as the diAerences between
Karman frequencies of the modes at the given Re.
Within the limits of experimental uncertainty, the linear
growth rate of the fluctuations is proportional to the
threshold deviation Re —Re„,as shown in Fig. 6. The
slope is almost the same for the transitions of three
diA'erent helical modes. The same behavior is observed
for the phase diflerence between any two points in the
wake.

These mode transitions and the associated stability lim-
its can be understood in the framework of the phenome-
nological Ginzburg-Landau model mentioned above. In
this model, the wake formation region is represented by a
one-dimensional array of diff'usively coupled nonlinear os-
cillators distributed along the spanwise direction of the
body (p for the torus). The wake pattern is obtained by
relating the downstream direction x to time t using the
transformation t —x/U„where U, is the convection
speed of the vortices. It must be emphasized that the GL
model is used for modeling diAusive processes along the
span~ise direction; it does not contain any dependence on
the downstream coordinate. This model has been suc-
cessful in describing 3D eAects in the wake of cylinders
[2,3] and also rings [12]. For the ring, the following
complex GL equation is used:

BA 6 A

Bt
= cr(1 +icp) A +p (1 +ic I )

6(Dv/2 '
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FIG. 7. Numerical simulation of the ring wake using Eqs.
(I) and (2) with Re =65, k =0.2, p =10v, l =25/v, cp =11.8,
c] = —0.5, c2= —4.0, and mode 3 as initial condition. This
spatiotemporal plot of isophase lines of 2 corresponds to a wake
visualization, with the body on the right-hand side and flow

from right to left. The transition is very rapid because of the
great threshold deviation (Re —Re3 ———42).

o'=k(v/d )(Re —Rep), and k, p, l, cp, c~, and c2 are
model parameters (see Refs. [2,12]). The "plane wave"
solutions of Eq. (1), which, because of (2), have discrete
spanwise wave numbers, correspond to the diAerent
modes observed experimentally in the ring wake. These
waves exhibit an instability with respect to long wave-

length disturbances for wave numbers (i.e., shedding an-

gles) above a certain limit, which is a function of Re
[3,14]. The analytic treatment [14] predicts instability
for

bilities observed, e.g. , by Cimbala, Nagib, and Roshko
[17].

To our knowledge, this is the first experimental evi-
dence of such a kind of instability in open flows. Since
the GL model does not incorporate the body curvature,
this instability should also appear in the wake of circular
cylinders, and it may be at the origin of the cell formation
observed by Konig, Eisenlohr, and Eckelmann [7] or the
transition between oblique shedding modes seen by Willi-
amson [6]. The ring geometry, however, with its discrete
shedding angles and the absence of end effects influencing
the whole wake, seems to be more convenient for the ex-
perimental observation of this instability in bluA' body
wakes at low Reynolds numbers.
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amson, P. Pelce, and A. Pocheau for many helpful discus-
sions. We are also grateful to J. Minelli and F. Abetino
for their technical assistance. This work is supported by
the French CNRS as part of the Groupement de Re-
cherche "Ordre et Chaos dans la Matiere" and by the
European Community under Contract No. JOU2-CT92-
0159. Laboratoire de Recherche en Combustion is
CNRS URA No. 1117.

Re & Re„=Reo+ 4(p/v)
l (D/d)'

3+C]C2+ 2c2

1+c)c2
n

In this expression finite size eAects due to the periodic
(and not infinite) domain are neglected. A calculation
analogous to the one discussed in Refs. [15,16] for the
complex GL equation shows that in our case these eftects
are smaller than the experimental uncertainty. The sta-
bility limit Re„(n) is plotted in Fig. 3 as a continuous
line. The model constants, chosen empirically, are con-
sistent with previous measurements in cylinder wakes (see
Refs. [2,3]). The dashed line in Fig. 3 corresponds to the
marginal curve of oblique shedding with zero amplitude.

Figure 7 shows the result of a numerical simulation of
the GL model equation representing a visualization of the
wake. The phase fluctuations of Fig. 5 correspond to a
growing waviness of the vortices (see also Ref. [2]). The
breakdown of the initial mode occurs via vortex disloca-
tions. The pattern in Fig. 7 produces the same kind of
phase fluctuations and "velocity" spectra as in the experi-
ments.

Figure 3 resembles strongly the stability diagrams en-
countered in thin-layer cellular convection [15,16], where
similar GL model equations are used to describe the spa-
tial patterns and where the instability corresponding to
the one presented here is known as the Eckhaus instabili-
ty. This resemblance is purely mathematical: In the
present case we are not dealing with an instability of the
periodic streamwise vortex pattern in the wake, but an in-
stability of the spanwise structure of the vortex forma
tion and shedding process. The waviness of the vortices
resulting from this near wake instability must also be dis-
tinguished from the waves associated with far wake insta-
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