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Dynamical Relaxation of the Surface Tension of Miscible Phases
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The dynamical behavior of the surface tension of two initially immiscible phases on raising the tem-
perature to a value greater than or equal to the critical temperature is studied using analytic techniques,
mean field dynamical equations, Monte Carlo simulations, and molecular dynamics simulations. Dis-
tinct behavior is predicted in situations with a conserved order parameter and when no conservation law

is operative. A novel scaling form is obtained for a system evolving to equilibrium at its critical tempera-
ture.

PACS numbers: 47.20.—k, 05.70.Ln

Recent experiments have focused on the physical in-

tegrity of the nonequilibrium interface between miscible
fiuids [1-5]. In analogy with the surface tension of an
equilibrium interface between immiscible fluids, an ef-
fective surface tension may be defined as [6]

model A: Tf & T, ,

model 8: Tf ) T, ,

model A: Tf =T, ,

o.—e

a—1/t '";
a-m02t 'fw (tmo-),

with z~ = vz/P; (4a)

aca'tx:
~ dz,

Bz
model B: Tf =T, , o —mat "'ftt(l, mo); (4b)

where c is the local composition and z is the direction
normal to the interface.

In this Letter, we study the dynamics of surface tension
in a variety of situations using a multipronged approach.
We consider an initially immiscible two phase system and

study the eA'ective surface tension as defined in (1), on

raising the temperature to a value above or equal to the
critical temperature. Most of our results have been ob-
tained in the context of an Ising model in both the mean
field limit and incorporating fluctuations. In the Ising
model, the two phases correspond to up and down magne-
tizations. Cases involving a conserved order parameter
and no such conservation law are shown to have qualita-
tively different behaviors. The dynamical surface tension
is found to have distinct temporal behavior depending on

whether the final temperature of a system with an initial

sharp interface is above or equal to the critical tempera-
ture (T,) of the system. A novel feature of our work is

the derivation of Langevin equations for soft Ising spins
on a discrete lattice that lead to the exact equilibrium
state at any arbitrary temperature. On turning off the
noise, these equations reduce to a mean field approach.
Our numerical calculations are complemented by an ana-
lytic analysis of the equations of motion in a linearized
approach and with an approximate incorporation of the
nonlinearities in a self-consistent manner. Finally, molec-
ular dynamics simulations of a two-fluid system and a
liquid-vapor system are presented to demonstrate the dis-
tinct dynamical response of the two cases.

We begin with a summary of our results:

which in the limit of mo 0, t ~, u =—to const
simplifies to

a—mot 'ftt(tnto ), (4c)

H = —
2 QK,yS„Sy,

x,y
(s)

where K„y =K when x,y are nearest neighbors and
5 = ~ 1, by making a Hubbard-Stratonovich transfor-
mation and writing the partition function

where the final temperature is denoted by Tf, model A
refers to the situation where there is no conservation law

for the order parameter; model B is the conserved-order-
parameter case [7], mo refers to the initial step in the
order-parameter profile; v is the correlation length ex-
ponent; z is the dynamical exponent; and p is the order-
parameter exponent. The equation for z follows from

scaling arguments: mo-g ~" and t —g' —mo ', where

g is the correlation length.
The exponent x; is different for models A and B and so

is zm, since the dynamical exponent z differs for models A
and B. Note the unusual scaling form for a. involving the
initial step mo. Our molecular dynamics (MD) results
for Tf ) T, indicate that a two-fluid system has model B
type behavior whereas a liquid-vapor system shows the
fast model A type relaxation. This result is due to the
fact that unlike the two-fluid case, the liquid phase can be
converted into the vapor phase and vice versa and no con-
servation law is operative.

Mean fteld dynamics for soft Ising spins. —Our equa-
tions of motion are obtained for the Ising Hamiltonian
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with the eA'ective Boltzmann weight given by [8]

Fjmt = ,' gm—„K„ymy —g V QK,ymy (6)
xy x, y

with V(p) =In coshiti. Note that the discrete lattice is
maintained while the discrete spin variable S has been
replaced by I„ that takes on values between —~ and
+~. Following Chandrasehkar [9], we derive a Lan-
gevin equation for the dynamics of rn:

—12-,
I

40 HO 120
m =f [m]+gg gy(i).

y, a
(7)

For model B dynamics, the conservation law that
g,m„=o is imposed by requiring that

Z,f.= X g-, 4«)=0,
X X,y, Z

(8)

where (y(t) is a white noise (with a Gaussian probability
distribution), satisfying ((„'(t)(~~(r ') ) =2',p8,y li(r —t ')
a =1,2, . . . , d where d is the dimensionality. In order to
obtain the correct equilibrium distribution with the
weight determined by (6), we choose

f.[m[=yZ Xg:.gy'
. t)F[m]

y za my

gxy y, X+~ ~y, x 1

(9)
—2-

I

log I o(tmo)

~here u is a unit vector in the ath direction. With this
choice Eq. (8) is satisfied. Model A dynamics with no
conservation law is obtained simply by choosing g„y

6 ] 6 y and y
= —

1 . I n the naive continuum limit our
equations reduce to the standard models [7] A and B in

the bulk for T near T, . Furthermore, turning oA the
noise leads to a mean field approach. The continuous
variables m allow for more efficient averaging than the
discrete Ising variables S.

We have used the model A equation with noise at T,
[of the infinite d=2 Ising model, which is known exactly
for the Hamiltonian (6) due to its equivalence to Eq. (5)]
for two-dimensional L & L systems with periodic boundary
conditions with L =4, 8, and 16 to estimate the dynami-
ca1 exponent z. Our result z =2.1+ 0.2 is in accord with
Monte Carlo estimates on discrete Ising spin models us-

ing Glauber dynamics. Our equations incorporate all the
nonlinear terms (only the leading terms are present in the
Cahn-Hilliard continuum equations valid for T—T,).

The results of integrating the mean geld equations are
shown in Figs. 1 and 2. We choose an initial condition
m(x, o) = —mo for x (0 and +mo for x & 0. Equations
(2)-(4) are found to hold with x;(A) = —,

' and x; (B) = —,
' .

Further, f~(u) =const for u 0 and f~(u) —u"' 'I as
u ~ with xI(A) =

z . (Note that z =2 for model A
in the mean field limit. ) Unlike the model A system at
T„ the crossover to the u ~ limit is not observed for
the model B case.

FIG. 1. (a) Exponential decay of o for model A with

Tf & T,. The upper line is obtained on integrating the mean
field equations (K, —= —,

' ) for different initial steps ma=2
4,5,6,7. The lower line is the analytic result in the linearized
approximation [Eq. (12)l. (b) Mean field scaling plot for mod-
el A with Tf =T,. The results are for initial steps m0=2
n =0, 1,2, . . . , 7. The predictions of the self-consistent non-
linear model are shown as the dotted line.

Fffecr of fluctuations We have .—carried out Monte
Carlo simulations at T, for a d=2 discrete Ising model
(5) with periodic boundary conditions in one direction
and antiperiodic in the other using both Glauber and
Kawasaki dynamics (Fig. 3). Our results again are con-
sistent with the scaling form (4). In both cases, the ini-

tia1 power law x; is the same as found in mean field

theory. As in mean field theory, no significant crossover
at late times is found for model B (Kawasaki dynamics).
In the case of Glauber dynamics, one may readily esti-
mate from the value of z in d=2 that the final power
law exponent xj should be 8, which is sufficiently close
to x; = 2, that we are unable to discern the diN'erence in

our simulations. We expect that in higher dimensions

x; = 2, while xI is determined from the corresponding

z~, which is a function of the dimensionality.
Analytic analysis The Cahn. —-Hilliard equation [7]

obtained on expanding our equation of motion for T= T,
is (in suitably chosen units)
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FIG. 3. Monte Carlo results for Tf =T,. The crosses denote
model A (the results were averaged over 1000 systems of
64x64 size) and the squares model B (averaged over 500 sys-
tems of 48x48 size). The data for model B have been shifted
by 5 units to the left.

—0.5-

FIG. 2. (a) Mean field power law plot of cr vs t for model B,
T/) T„mo=2 ", n =2, 3, . . . , 7 (solid line). The dotted line
is the analytic result in the linearized approximation. (b) T/
=T,; m0=2 ", n =5,6,7. The dotted line is the linearized ana-
lytic result.

model A: m~ =V m~ —am~ —m~+

take into account the nonlinearities in a self-consistent
manner with the equation

m = —r[ —V'+a+m'(t)]m(x, t)

with I =1 for A and —V2 for B.
The self-consistency is imposed by requiring that

&L/2
m'(t) =— dxm'(x, t),

L, ~ —L/2

where L is the size of the system. Note that our approach
is equivalent to a Berlin-Kac model [10] at T=0.
Fourier transforming as before and carrying out some
tedious, but straightforward algebra, we find complete
agreement with the scaling form (4) with

x;(8) = —,', fg(u) =(i2/tr)2/(2+u)

2fpl pa(t) — x ~

e "'ix/2t, A,
i 1/2

3 +g 1

2at 2a 2t

(12)
B.

Exactly at T„by setting a =0, one finds the initial behav-
ior of cr(t) as

iver/2t, A,
27/4r( ~ )t

—I/4 (13)

The validity of (13) at long times is questionable be-
cause of the neglect of nonlinear terms. We attempt to

model B: mtt =V (amtt+mtt —V mtt)+

with a~ T —T, .
For Tf )T„at large t, m (x, t) -0 allowing the

neglect of the nonlinear terms in (11). Fourier trans-
forming (11) and solving for the surface tension, one ob-
tains

and

t i/mo
x;(8) = —,', f/'(u) =u ' ' e "+"'"dx.

4 p

The apparent lack of crossover in model B is due to the
fact that unlike f~(u) which is a function of u alone,

f/r(u) is also seen to depend on mo. Indeed, numerically
earring out the integral in f/t(u), one finds a power law

behavior characterized by exponent 4 in excellent agree-
ment with the numerical integration of the mean field

equations.
Molecular dynamics simulations. —We have carried

out MD simulations [11] (in three dimensions) of a
Lennard-Jones fluid with a liquid-vapor interface. There
are 1372 molecules in a 3D box of 11.3cr (o is the molec-
ular length scale) in the two lateral directions and 22 6cr.
in the longitudinal direction. We calculate the dynamic
surface tension by monitoring the profiles. Starting with

an equilibrium initial configuration at a reduced tempera-
ture T* =0.75, the systems are allowed to relax at a tem-

3467



VOLUME 71, NUMBER 21 PH YSICAL REVIEW LETTERS 22 NOVEMBER 1993

—4-
0

3.8-

2.8-

the anomalously tiny effective diff'usion coe%cient (the
concentration gradients are smoothed by diff'usion) es-
timated in Ref. [5] on employing a final temperature TI
very close to T, [(TI—T, )/T, —10 ] and fitting the
surface tension with a 8/[8+ (D,ttt) ' ] form. Since our
analysis shows that at T, a t '~ behavior should be ob-
tained, for Tf & T„one would expect an initial t ' be-
havior crossing over to the May-Maher fitted form.
Indeed, our mean field equations show that for (TI—T, )/T, —10, there is a long stretch of initial behav-
ior of the t ' type, possibly accounting for the ultralow
diA'usion coe%cient.

In summary, using a variety of complementary tech-
niques, both numerical and analytical, we have studied
the temporal behavior of the eAective surface tension in a
variety of situations. The predictions made here should
be amenable to experimental verification.

We are indebted to Jim Maher for stimulating discus-
sions. This work was supported by the NSF, NASA,
IN FN, NATO, the Pittsburgh Supercomputer Center,
and the Center for Academic Computing at Penn State.
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perature above T, leading to an exponential decay [Fig.
4(a)]. We have also studied the relaxation of systems
containing two initially immiscible liquids each having
2744 molecules in a box of 11.3X11.3&&48.8 (in units of
o). The attractive part of the interaction between the
two species of molecules was a quarter of that between
molecules of the same species when the systems were
prepared initially at T* =1.4. The ratio of the interac-
tions was abruptly changed to 0.95 corresponding to
Tf&& T, and the relaxation of the profile was measured.
Similar simulations on systems of two-thirds the longest
edge length have been carried out to ensure the absence
of finite size eAects. The result is consistent with the
t ' prediction and is strikingly difTerent from the
liquid-vapor system [Fig. 4(b)]. Our results also demon-
strate that hydrodynamic modes in our MD simulation do
not make a qualitative difterence for T & T, .

The May Maher experiment-s [5].—We now turn to

ln(t)

FIG. 4. (a) Molecular dynamics results for a liquid-vapor
system. The system was equilibrated at reduced temperature
T* =0.75 and then evolved isothermally at T* =1.45 (T,*
= 1.35). The results are an average over 10 runs. (b) Molecu-
lar dynamics of binary liquids averaged over 10 runs. The dot-
ted line is a guide to the eye and has a slope —

& .
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