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Scaling Behavior in Anisotropic Hele-Shaw Flow
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We find the self-similar scaling behavior x ~13° y ~1 5 for the arms which form in radial Hele-Shaw
flow with anisotropic surface energy, where x is the longitudinal and y is the transverse coordinate of
each primary finger. We first observe this by direct numerical simulation using a boundary-integral
method. Then we analytically derive the scaling law and the full asymptotic shape, by combining a sim-
ple boundary-layer analysis with previous results on velocity selection.

PACS numbers: 47.15.Hg, 47.20.Hw, 68.10.—m

The equations of Hele-Shaw flow are quite well known.
In the region exterior to a growing bubble or seed in the
plane there is a harmonic scalar potential field ¢(x,7)
satisfying the Laplace equation with prescribed far-field
behavior

Ap=0, ¢(x,1)~In|x|, |x|]— oo. (n

The local normal velocity of the interface I'(¢) is given by
the consistency condition
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We have chosen our length and time scales so that the
rate of change of area of the bubble is 27.

For the derivation of this model, the reader may con-
sult a number of sources. The most popular way in which
it arises is in describing viscous fluid flow in a Hele-Shaw
cell, that is, flow between two closely spaced flat plates
(see [1,2]). Then ¢ is the negative of the pressure, the
fluid velocity is v=V¢, and Eq. (1) expresses incompres-
sibility of the fluid, together with a constant volumetric
injection rate. We neglect complicated three-dimensional
details of the fluid-air interface.

The same model also describes growth of a solid crystal
by solidification from its melt [2], in the “quasistatic”
limit of small undercooling or impurity concentration, so
that the growth rate of the seed is slow compared to the
rate of adjustment of the diffusion field, and Eq. (1) re-
places the diffusion equation.

We complete the system (1,2) by requiring ¢ to satisfy
an anisotropic local-equilibrium condition on I':

olr=do(1 —ecosmO) # , 3)

where dy is an effective surface tension parameter, and #
is the local geometric curvature of I', positive where the
bubble or seed is convex. We have chosen a simple form
for the anisotropy, described only by its strength € and its
symmetry m. The angle 6 is the orientation of the out-
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ward normal relative to a fixed direction such as the x
axis. In this Letter we shall always take m=4. In order
to explore the long-time scaling behavior of this system
for m =4, we may fix the value of do, and vary only the
single parameter e.

In the Hele-Shaw fluid system, attention is most often
restricted to the isotropic case, ¢ =0. Anisotropy may be
introduced by engraving a regular grid on the plates [3];
it has been shown [4] that this does not affect the bulk
condition (1), but certainly does perturb the boundary
condition to something like (3).

In solidification, Eq. (3) is the Gibbs-Thomson condi-
tion (see [2,5]). In this case the anisotropy is very natu-
ral; it comes from the existence of a crystal lattice struc-
ture inside the growing seed.

Numerical method.— We have adapted the boundary-
integral method of [6] for isotropic Hele-Shaw flow to
solve the system (1)-(3), with improvements developed in
[7]. The boundary-integral formulation has been used for
isotropic Hele-Shaw flow in [8], and a related method for
anisotropic crystal growth in [4,9]. In this formulation,
the interface is written as a complex function z(p),
periodic with period 2z in the real parameter p, and the
complex potential w(x +iy), of which ¢ is the real part, is
written

w(n) =lnn+—l—f2”y(p)ln[n—z(p)]dp
2mi Jo '

The contribution from the interface is represented in
terms of a real-valued vortex sheet strength y(p) with
zero mean. The boundary condition (3) leads [6] to the
linear integral equation

— _ Zp(p) 2= }’(Q') '
r(p) 2Re{ 27i Pl z(p)—z(p')d }

-2 Re{ﬁi‘?l } —2do-4 {11 — ecosO(P 1 # ()}
z(p) dp
@)
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for y(p), where PJ denotes the Cauchy principal-value
integral. We approximate principal-value integrals with
spectra accuracy, using alternate-point quadrature for-
mulas introduced in [10] and first used for vortex sheet
computations in [11]. For a given instantaneous interface
configuration z(p), (4) is solved by iteration; as in [6],
convergence of the iteration is accelerated up to tenfold
by using cyclic Chebyshev semi-iterative techniques [12].

The complex conjugate velocity field Q* =dw/dz =u
—iv at a point z(p) on the interface is

: * = 1 l 7(2)
,}T‘ZQ () z(p) * 2 z,(p)

1 2z Y(EI

+ 27z'iP 0 z(p)—z(p")
As in [4,9], we use as dynamic variables the local orienta-
tion 8(p) and the arc length s(p), and we maintain an
equal-arclength representation; that is, s, =L /2n, where
L(t) is the total length of the interface. The local veloci-
ty is written in normal and tangential components
0(p)=U(p)n+V(plt, and 0(p,t) and L(¢) are updated
according to

9 _ Ly, +nv,
9 sp

dp'.

(5)
-‘;,—lt‘ =s,,j;2”U(p)§‘{(p)dp ,

where V(p) is a modified tangential velocity [4,7], deter-
mined to maintain the equal-arclength representation.
The advantage of this representation is that we may
use knowledge obtained in [7] of the behavior of the high
Fourier modes of (5) for e=0 to reduce the stiffness of
the associated system of ordinary differential equations:
if 6(p,1) =X N=10,(t)e™, then d6,/dt for large n is near-
ly linear in 6, with coefficient proportional to —do|n|>.
In applying this result to our anisotropic case, we use only
the mean value of the surface tension, do, which reduces
somewhat the effectiveness of our code at large anisotro-
pies. The terms remaining after extracting the linear part
are advanced with a second-order Adams-Bashforth
method; since spectral accuracy is achieved in the space
discretization, the time stepping is the only significant
contribution to the formal truncation error of the scheme.
Filtering techniques [13] are used to prevent growth of
roundoff error in the high Fourier modes; convergence of
a scheme including such filtering has recently been prov-
en for isotropic Hele-Shaw flow [14]. The number of
points /V is doubled whenever significant amplitude ap-
pears in modes 6, for n > N/2. The code enforces both
fourfold rotational and bilateral reflection symmetries.
For all our computations, we take do=0.001, in order
to obtain interesting behavior when the bubble or seed is
of sizes O(1). We use as initial condition a circle of ra-
dius 0.1; at early times the seed remains roughly round,
of radius r=~/r§+2t. When the seed reaches a large
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FIG. 1. €¢=0.1, t=0to 3.5, At =0.5.

enough size, instability sets in [15], and arms begin to
form. The initial perturbation which “kicks off” the in-
stability is provided by the anisotropy of the surface ten-
sion. For R=0.2, the linear growth rate of the Fourier
modes has a maximum very near the eighth mode; thus
even though the perturbation is fourfold symmetric,
bumps form at the intermediate orientations as well, gen-
erating secondary arms. In the later nonlinear regime,
the secondary arms grow more slowly than the primary
since they are not favored by the surface energy anisotro-
py.
In Figs. 1 and 2, we show the full computations, for
€=0.1 and 0.5, respectively. For ¢=0.1, the computa-
tional time step At =5x10 "% for ¢=0.5, At =10 "* ini-
tially, increased to 2x10 ™% for += 1. The number of
computational nodes on one-quarter of the interface was
1024 initially, increased to 2048 for ¢ =0.5 at 1t =0.61.
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FIG. 2. €=0.5,1=0to 1.5, At =0.3.



VOLUME 71, NUMBER 21

PHYSICAL REVIEW LETTERS

22 NOVEMBER 1993

1 - — : - : ~

05
0 :
]
-0.5F N
|
-1 . ]
0 0.5 1 1.5 2 25 3
3/5
x/t

FIG. 3. Scaled ¢=0.1, t =1.5 to 3.5, At =0.5.

For €=0.5 (Fig. 2), the aspect ratio of the primary
fingers is small and the tips advance rapidly; the secon-
dary fingers are strongly unfavored and their growth is
suppressed. For €=0.1 (Fig. 1), the secondary fingers
keep growing and their tips split; for both of these values
of ¢ the primary fingers are apparently stabilized against
tip splitting. Our result for ¢=0.1 is qualitatively very
similar to the corresponding one presented in [4]; we do
not know of any other computations which have used € as
large as 0.5. We believe that our computations are long
enough to show the long-time asymptotic behavior of the
overall shapes of the primary fingers.

In order to describe the structure of these shapes, in
Figs. 3 and 4 we have displayed the same data for one
quarter of the interface including one primary finger, but
with x (the longitudinal coordinate) and y (the transverse
coordinate) scaled by complementary powers of t. The
axes are x/1% and yp/t %3, where the exponent a=3/5 is
determined in the following section; the sum of the ex-
ponents must be 1 since the area grows linearly in time.
We see very clear self-similar scaling behavior, after ini-
tial transient periods which are not plotted. That is, our
computations indicate that, up to changes in parametriza-
tion, the long-time behavior of the primary fingers is ap-
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FIG. 4. Scaled ¢=0.5,t=0.6 to 1.5, At =0.3.

parently of the form

3/5 =t2/5

x(p,t,e)=t"x0(p,e), y(p,t,e) vo(p,€),

for some base profile (xq,y0) which may depend on e.
This base profile is the ‘“egg” shape in Figs. 3 and 4
which is very well-defined around the tip, and is better
and better delineated near the back as time advances.

We have performed the same computations with half
the time step for e =0.5, obtaining agreement with these
solutions to four decimal places at ¢ =0.6.

Scaling and selection theory.— The above scaling is
very different from the ¢ '/2 behavior conjectured in [16].
We now show how it may be understood by analyzing the
growing profile on two different length scales in a bound-
ary layerlike fashion: The outer length scale is charac-
teristic of the whole object, while the inner scale is that of
the tip radius of curvature. We make the assumption,
based on our numerical results, that the tip position is
asymptotically of the form x~At% 5 <a<1; then, as
explained above, y must scale like ' 7% We show how to
determine the exponent a, the coefficient A4, and the en-
tire asymptotic egg shapes.

First, we show how the scaling exponent a is deter-
mined by matching between the two length scales. In the
inner scale, do is the only dimensional parameter which
controls the selection of the tip shape. Since ¢, being a
rate of change of area, has dimension L?%/7, the dimen-
sion of dg is L3/T [see Eq. (3)]. Therefore, as in [2,17],
the result of selection theory applied to the tip must be a
law giving the dimensionless number p?V/do as a func-
tion of the anisotropy ¢, where p denotes the tip radius of
curvature and V the instantaneous velocity. Since V
~dx/dt~1°"" and p~(d*x/dy?) "'~1273% we see
p2V ~1373¢ and constancy of p2V requires a =3/5.

Now we determine the growing self-similar shape in
terms of 4 and a. At large times, since the width of each
arm becomes small compared to its length, the field
around the crystal may be determined by replacing the
fingers by line segments, and the overall shape by a cross
in the complex plane z =x +iy with vertices at & R(7),
+ iR (1), with R(¢t) =At° The potential ¢(z), with ¢ =0
on the surface of the cross and having the far-field behav-
ior specified in Eq. (1), may be determined by conformal
mapping onto a circle as in [18]; the result is

2
w=¢+i|//='fcosh_‘[—ZR—] , L z

dz /24__R4 '

By Eq. (2), the lateral velocity of the sides of the finger is
given by dw/dz; focusing attention at a fixed point x on
the top side of the rightward-pointing finger, we have

dy X g<x<xgpt) =AY,

dt /x,‘Ep — x4
We therefore obtain the complete asymptotic shape
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Only the parameter 4 remains to be determined.
It may be seen from Eq. (6) that the tip radius of cur-
vature scales as ¢'5. In local coordinates Xtip~™ X

=¢5¢ =1y, Eq. (6) can be expanded as
2
13 424, 0t L nrr
= |5 | At b e

So as time increases, the tip shape appears as a parabola
on ever increasing lengths when measured on the scale of
the tip radius of curvature. The effect of a nonzero d
[Eq. (3)] on this parabola can be analyzed in a standard
manner [2,17] by writing an integral equation for the tip
shape evolution. Searching for this shape in the form
E=E(n,t), we see that the ' contributes a negligible
amount to the local normal velocity at a fixed 7, as com-
pared to the tip velocity xp(z). So the result would be
the same equation as for a parabola of constant shape
propagating at constant speed, with the whole time
dependence included in the product p(¢)2V(z). We may
therefore use directly the numerical results presented in
[17]. In their notation,

p(WV () _
d

0

1C(e),

using the fact that the selected dimensionless parameter
p*V/dy is 2 times smaller [19] for the one-sided model
than for the symmetric model of [17]. Since p
=1(5/3)24 735 and Vv =(3/5) At ~%5, this determines
the only remaining parameter A(¢) in Eq. (6):

1/5
250
27doC(€)

Using the values C(0.5)=64.5 and C(0.1)=449.5
presented in [17], we obtain 4(0.5)=2.70 and A4(0.1)
=1.83. The corresponding analytical curves are com-
pared with the numerical results in Figs. 3 and 4. We
emphasize that the dashed lines are completely deter-
mined by the analysis above, with no free parameters.
For € =0.5, the fit is very good. In Fig. 3, for ¢ =0.1, the
fit to the calculated solution is not as good, although the
solution exhibits a clear 13 x %5 scaling. One reason for
this discrepancy may be because across the time we have
been able to compute, the secondary arms are absorbing a
constant fraction of the volume flux.

In conclusion, we point out that this self-similar behav-
ior is relevant not only for viscous fingering, but also for

A(e) =
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dendritic growth at small undercooling. There, it should
exist as an intermediate-time asymptotic regime, which
holds as long as the diffusion length is larger than the
whole structure size, before the subsequent crossover to
the classical constant-velocity regime. Finally, it will be
very interesting to see how sidebranching transforms this
compact self-similar structure into an anisotropic fractal.
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