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We consider the viscous motion of an axisymmetric column of fluid with a free surface. The
Navier-Stokes equation forms a singularity as the height of the fluid neck goes to zero. Close to
pinchoff, the solutions have a scaling form characterized by a set of universal exponents. The shape of
the neck and its velocity field is described by scaling functions, which we predict without adjustable

parameters.

PACS numbers: 47.15.Hg, 03.40.Gc, 68.10.—m

Much of the current interest in singularities of par-
tial differential equations [1-4] has been generated not
only by their physical significance, but also by the ex-
pectation that their behavior is governed by universal
scaling laws, largely independent of boundary or initial
conditions. The physical reasoning is that singularities
involve the production of infinitely small scales, so that
the equations locally evolve on scales widely separated
from the ones set by the boundary conditions. Thus one
is led to universality and, in the absence of any length
scale, self-similarity near the singularity.

In this Letter we establish scaling solutions for the
pinching of an axisymmetric fluid neck. Typical physical
examples are the breakup of jets [5] or the dripping of
a faucet [6]. Linear stability analysis of those problems,
which describes the onset of drop formation, already has
its own and long-standing history [7,8] . However, very
little is known about the last stages of drop formation,
when the neck behind a drop becomes arbitrarily small,
and fluid is expelled from it with increasingly high speed.
Quite strikingly, the theory presented here not only pre-
dicts universal exponents, but also universal amplitudes
for the scaling functions. This means the neck thick-
ness or the fluid velocity inside the neck can be predicted
at a given time distance from the singularity, indepen-
dent of the experiment considered. This is because the
relevant length and time scales are set completely by in-
ternal properties of the equations, namely, by.a balance
between surface tension forces trying to reduce the neck
radius, and viscous forces. To pick an arbitrary example,
consider the pinching of glycerol at 20°C. Independent
of the type of experiment, 0.01 sec away from the singu-
larity the minimum neck radius will be hpyin = 13.1 pm,
and the maximum fluid velocity vpmax = 106 cm/sec.

This implies a higher degree of universality as previ-
ously known in scaling theories. In critical phenomena
[9], only amplitude ratios are universal. In previous stud-
ies of two-dimensional pinching (2], the singularity has
to be provoked by the boundary conditions, and there-
fore amplitudes depend on the applied pressure, or other
properties of the boundary.

The Navier-Stokes equation for an axisymmetric col-
umn of incompressible fluid with viscosity 7, density p,

3458

and surface tension « reads [10]

p(Byvr + V0V + v,0,0)
=-9,p+ n(@f’ur + 631» + Opvy /T — v,/rz), (1)

p(0sv, + vp0pv, + v,0,;)
=—0,p+ n(af'uz + 63“2 + 6rvz/7') - Pg, (2)
and

Oy + 0, + v /T =0, 3)

where v, is the velocity along the axis, v, the velocity in
the radial direction, and p the pressure. The boundary
conditions are

non=—y(1/Ry +1/R,) (4)
and
not=0. (5)

Here o is the stress tensor, n the outward normal, and R;
and R, are the principal radii of curvature. The equation
of motion for the height of the fluid neck h = h(z,t) is

Bth + v b = vp|p=n, (6)

where a prime refers to differentiation with respect to z.

A crucial simplification comes in by keeping only the
lowest order radial dependence in (1)—(6). To this end
the velocity and pressure fields are expanded into a
power series in r: v,(z,7,t) = vo(z,t) + va(z,t)r2 + -+,
p(z,7,t) = po(z,t) + p2(2,t)r? + - - -, and, in accordance
with (3), ve(z,7,t) = —vj(2,8)7/2 — vh(z,t)r3/4 — - .
We insert this ansatz into (1)—(6) and in each case only
take the lowest order terms in r and h into account. Then
(2) gives

p(Bevo + vovg) = —po + N(4ve 4+ vg) — pg, (7

and (1) is satisfied identically. The unknown func-
tions po and vy are eliminated from (7) by using the
boundary conditions (4) and (5), respectively: py =
Y¥(1/R; + 1/R2) — nv§ and ve = v{/4 + (3/2)vgh'/h .
This leaves us with a coupled set of equations for the
velocity v(z,t) = vo(z,t) and the height h(z,t):
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1 1Yy (h2v')!
!
=5 +5 - 8
(v +vv') 7<R1+R2> +30"—5= g, (8)
8th +vh' = —v'h/2. (9)
For the moment we keep the complete expression for

the mean curvature,

1 " 1 1 B
Ri Ry  h(1+h?)1/2 (14 h2)3/2

(10)

We will see below that close to the singularity higher
order terms involving wva(z,t), etc., become arbitrarily
small, so that (8) and (9) are an ezact representation of
(1)-(6) asymptotically. But even away from the singu-
larity (8) and (9) give an excellent description of experi-
ments. This is demonstrated in [11] for both jets and the
dripping faucet.

The natural length and time units of the singularity are
2, =n?/vp and t,, = 3 /+?p, which are the scales where
viscous and surface tension forces are balanced. Length
and time distances from the singularity are measured by
2 = (z — 2) /€, and t/ = (to — t)/t,, respectively. In
the pinch region, meaning that |2/| < 1 and ¢/ < 1, we
expect h(z,t) and v(z,t) to have the scaling form

h(z,t) = £,t"* ¢(2' /t'P), (11)
v(z,t) = (L[t )t 2(2' [t'P).

The correct exponents aj, ag, and 8 in (11) can be in-
ferred from dimensional analysis [12] by demanding cer-
tain regularity properties of the functions h and v as one
of the physical parameters 7, 7, or p goes to zero. This
corresponds to saying which terms in (8) remain rele-
vant as t' — 0. Surprisingly, the term to be dropped
is v[h"’ /(1 + h'2)3/2)’| which contains the highest deriva-
tive in the problem. It comes from the radius of cur-
vature in the direction of the axis. This means we de-
mand h ~ <, and v to be finite as v — 0, so that
—v(1/Ry + 1/R3)" — ~h'/h? and all other terms in (8)
remain finite in the limit. There is only one particular
combination of 7, v, and p consistent with this require-
ment, giving a3 = 1, as = —1/2, and 8 = 1/2. All
other choices turn out to be inconsistent, in that the
term dropped is more singular than the ones retained
as t’ — 0, or either h or v are not singular as t’ — 0.

Inserting (11) into (8) and (9) leads to a coupled set of
ordinary differential equations for the scaling functions
#(£) and 1(€) in the similarity variable ¢ = 2'/t'1/2:

/24 &Y 2+ Py = ¢' /9 +3¢" + 6y'd [p, (12)

1—'/2
¢ =op—T1_, 13
vren 43
As t' — 0, the highest order singularities in (8) are
proportional to t/=3/2. All lower order terms have been

dropped in (12), since they do not affect the asymptotic

behavior. Specifically, gravity only contributes a con-
stant acceleration and therefore drops out of the prob-
lem.

The solutions of (12) and (13) are parametrized by a
three-dimensional manifold of initial conditions. How-
ever, a set of consistency conditions selects precisely one
pair of profiles ¢, 1 which is physically realizable. The
first condition comes from the fact that the profiles h(z,t)
and v(z,t) are expected to move slowly away from the
pinch point. This means the critical time dependence on
t’ should cancel as 2’ — o0 [3], leading to two mutually
consistent conditions,

(&) - £2/0 =€, (14)
w(E) — €=,

as £ — +oo. By inserting the expansion of ¢ and ¥
around & = +o0 into (12) and (13) one indeed finds that
solutions to (12) and (13) with the correct asymptotics as
£ — +oo are parametrized by only two free coefficients,
respectively.

The remaining third condition is found from (13).
Since ¥(&) decays at infinity, it must be bounded. This
means the denominator ¥ + £/2 in (13) will become zero
at some point £. Demanding ¢ to be analytic on the
real axis amounts to saying that /(&) = 2, which is
the missing third condition. This leaves us with power
series expansions of ¢ and ¥ around £ = —o0, &, and
+00, each of which is parametrized by two real numbers.
Since the radii of convergence do not overlap, (12) and
(13) have to be integrated numerically in between those
regions. Using a shooting method, one finds the unique
profiles represented in Fig. 1 by solid lines. In particular,
there is no symmetric solution. By taking the total time
derivative of A(2 — zmin(t), t) = £,t'$(§ — Emin) One there-
fore finds that the minimum of h(z,t) moves with the
nonzero velocity Zmin(t) = (£y/t,)(—Emin/2)t'~1/2. This
also provides us with a physical interpretation of the spe-
cial point &: It corresponds to the point where the fluid
is at rest in the frame of reference of the moving surface.

To check if the pinch solutions are actually stable, we
numerically integrated (8) and (9) as described in [11].
For all our runs, covering a wide range of viscosities and
different initial conditions, we always found the solutions
to scale like (11) as t’ — 0, the resulting scaling functions
@, ¥ collapsing onto a single curve.

In Fig. 1 we show the convergence of numerical solu-
tions towards the similarity solution as t’ goes to zero, for
a typical run in the jet geometry. The dashed line corre-
sponds to t' = 0.39, ¢’ being smaller by a factor of 3 for
the chain-dashed, dot-dashed, and dotted lines, respec-
tively. We expect the similarity solution to be valid for
|2’| £ 1andt’ < 1, while outside of this region higher or-
der corrections become important. In the similarity vari-
able £ = 2//t''/? this means the range of validity should
expand like t/~1/2, This is seen rather nicely in Fig. 1,
as the £ value at which the simulation starts to deviate
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FIG. 1. The scaling functions of the height, ¢, and of
the velocity, 1, close to pinchoff. The full curve is the
prediction of the present theory; the dashed, chain-dashed,
dot-dashed, and dotted lines represent the result of a sim-
ulation at ¢ = 0.39,0.13,0.043, and 0.014. The inset con-
tains a blowup of the central region with only the latest time,
t' = 0.014. Note that there is no adjustable parameter in this
comparison.

from theory is larger by about a factor of v/3 ~ 1.7 as
t' decreases by a factor of 3. The inset demonstrates
the excellent agreement in the central pinch region for
t’ = 0.014 (dotted line). Note that there is no adjustable
parameter in this comparison.

We mention that preliminary calculations [13] at very
high viscosities and in the presence of gravity seem to
show similarity form only over a finite range of £ val-
ues. Under those conditions, the fluid forms thin threads,
which appear to favor secondary instabilities leading to
breakdown of the similarity solution for || greater than
some critical value.

It follows from (11) that the width of the pinch region
scales like t'1/2 whereas h goes to zero like t’. Therefore,
if the profile h(z, t) is normalized by the minimum height,
the pinch region forms a long and thin neck as ¢’ — 0. As
one can check explicitly by carrying out the expansion in
the radial coordinate to higher order, this is the reason
corrections to (8) and (9) vanish as the neck is pinch-
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ing off and the solution applies to the full axisymmetric
Navier-Stokes equations (1)—(6).

To demonstrate the predictive power of the theory, we
calculated the minimum height Apmi,, maximum veloc-
ity Ymax, and velocity of the minimum Zz,,;, from ¢ and
9. The result is hmin = 0.0304(y/n)(to — t), Umax =
3.07(n/p)/?(to — t)~1/2, and Zmin = 0.80(n/p)'/?(to —
t)~1/2.  Applied to the pinching of glycerol at 20°C
(¢, = 2.79 cm, t, = 0.65 sec), we find the numbers given
in the beginning of this Letter. Experiments to verify the
predictions of the theory are under way [14].

Many aspects of this problem remain to be investi-
gated. The most interesting seems to be the question
of unique continuation of the Navier-Stokes equation to
times after the singularity. The existence of a univer-
sal similarity solution for ¢ < 0 would imply that the
breaking of a fluid neck is independent of the microscopic
structure of the fluid, in other words, that breaking is a
hydrodynamic phenomenon.
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