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Possible Nearly Frictionless Sliding for Mesoscopic Solids
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A linear chain of atoms, interacting with anharmonic forces, one of whose end atoms is forced to vi-
brate harmonically, is studied as a simple model for kinetic friction between ideal crystalline solids. It is
found that there is a transition, as a function of chain length and driving frequency between a regime in
which there is dissipation (i.e., the internal energy increases as a function of time on the average) and
one in which there is practically no dissipation. This suggests that there can be dissipationless sliding for
su anciently small solids.

PACS numbers: 46.30.Pa, 05.45.+b, 81.40.Pq

It was shown in previous work on atomic level friction
[1,2] that whereas energy dissipation (which is generally
understood to mean the conversion of organized transla-
tional into vibrational energy) will occur when two
infinite solids slide in contact with each other, for a finite
harmonic solid, significant energy dissipation will only
occur if the inverse phonon lifetime is larger than the
spacing between the modes [2]. Since the mode spacing
increases as the size of the solid decreases, the question
arises as to whether there exists a critical size for real
solids, which are anharmonic, below which energy is not
dissipated when they slide relative to each other. This
question is addressed in this Letter.

The main source of phonon damping is the anharmoni-
city of the lattice, which causes the vibrational energy of
a phonon to be transferred to other phonon modes [3]. It
is well known that a harmonic oscillator anharmonically
coupled to other oscillators will only exchange significant
energy with them if its frequency is equal to a linear com-
bination of the frequencies of those oscillators [3]. For a
finite system, this rarely occurs because unlike an infinite
solid in which the modes form a continuum, in a finite
solid the modes are discrete, and hence it is rare to find a
linear combination of modes of frequency equal to that of
a given mode. Therefore, we might expect that the pho-
nons will not be damped by anharmonicity in a finite
solid. Although interaction of the surface atoms with the
environment does lead to some damping of the phonons
because the motion of these atoms is damped by their in-
teraction with the surrounding atmosphere and by radia-
tion, it was found to be much smaller than the mode
spacing [2], even for samples with linear dimensions as
large as I cm. The contribution to the damping due to
the surrounding atmosphere was estimated in Ref. [2] by
determining the damping constant (for damping assumed
linear in the velocity) of surface atoms which will give the
experimentally observed rate of cooling of a typical solid
sitting on a solid surface and in contact with the atmos-
phere. Similar arguments could also be applied to damp-
ing due to contact of the body with a macroscopic solid if
the coupling is relatively weak. The question of whether
anharmonicity can lead to damping of the phonons in a

finite sample was addressed in work by Fermi, Pasta, and
Ulam [4]. In this work, energy was initially given to a
single vibrational mode of a model solid with a small
amount of anharmonicity. Contrary to the usual hy-
potheses of statistical mechanics the energy did not
spread to the other modes of the system in time (the
equipartition principle). Later, it was argued by Ford,
Chirikov, and others [5,6] that the systems studied in
Ref. [4] have anharmonicity which is weak enough so
that they will be nonchaotic, and hence nonergodic, by
the Kolmogorov, Arnold, and Moser (KAM) theorem
[7]. If the anharmonic terms were stronger, however, the
atoms in the solid would no longer follow periodic orbits
in phase space characteristic of harmonic oscillators but
would instead execute chaotic trajectories, resulting in er-
godic behavior (i.e., the spread of the energy among all
the phonon modes of the solid). This point was discussed
by Chirikov using his overlap of resonance criterion [5].
Chirikov's work shows that, since as the system size in-
creases the phonon mode spacing decreases, there will be
a greater tendency of the phonon mode resonances of the
solid to overlap as the number of atoms in the solid in-
creases, leading to a transition to ergodic behavior at a
critical size.

The problem considered here deals with a model like
that considered by Fermi, Pasta, and Ulam driven by an
external force. In line with the above discussion, we
would expect that there shou1d also be a transition from
nearly frictionless to frictional behavior as the size of the
solid increases. This opens up the possibility that for such
small solids, since the phonon modes are practically un-

damped, there will be practically no dissipation of energy
when such small solids slide relative to solids of similar
size (i.e. , there will be no friction in solids of sufficiently
small size). Such a phenomenon could find application in

micromechanical machines (for example, a nanometer
size wheel turning on an equally small axel).

In order to study the possibility of dissipationless be-
havior in small solids, I have studied the following model
for friction in a small solid: Consider a chain of atoms in
which the atom at one end of the chain is held fixed and
the atom on the other end is forced to move harmonically.
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The equation of motion is

mxj = —a(2x~ —xj ~

—xj+~)+p[(x~. —xj ~

—a) —(xi+~ —xi —i) ] —P'[(xi —
x~ —

~

—a) —(x~~~ —xi —a) ],
where xj is the location of the jth atom in the chain, a is
the equilibrium lattice spacing, a, P, P' are parameters, m
is the atomic mass, and xo =0 and x~ =2 cos(cot) where
N is the number of atoms in the chain and A and m are
the amplitude and frequency of the motion that the end
atom in the chain is forced to undergo. The parameters
a, P, and P' were chosen to have the values corresponding
to the coefficients in the expansion of the force calculated
from the Lennard-Jones potential out to third order in the
displacement from equilibrium. (This choice avoids the
problem that one would encounter if one used only the
second order expansion, namely, that the assumed equi-
librium state of such a model in which the atoms are
equally spaced is not the ground state, leading to a possi-
ble instability if the system is driven hard enough. ) This
equation of motion was integrated by a fourth order
Runge-Kutta method and the vibrational energy was cal-
culated as a function of time. This model is a simplified
version of the friction models studied in Refs. [l] and [2].
The atoms can be taken to represent individual atomic
planes and the forced motion of the end atom can be
thought of as being due to atomic level height variations
of the surface of a second solid on which it is sliding.
Then, co is the "washboard" frequency 2nv/a, where v is

the velocity of relative sliding and a is the lattice constant
of the second solid with which this one is in contact along
the sliding direction. The results for several system sizes
are shown in Fig. 1. The value of 2 used in these calcula-
tions was 0.001a. As can be seen, there is a transition
from nondissipative to dissipative behavior as the size of
the system increases beyond a critical value [in the sense
that the internal energy of the 100 atom system of fre-
quency 0.3'~, where co~ =(a/m), shown in Fig. 1 does
not increase on the average as a function of time, whereas
the energy of the 200 atom system of the same frequency
does). The critical size also appears to depend strongly
on the driving frequency. For example, the 100 atom sys-
tem when driven at a frequency of 0.6m~ was ergotic,

whereas when driven at 0.3'] it was not. The critical
driving frequency for a 64 atom chain was found to fall
between 0.8m] and 1.2m~. This apparent inverse propor-
tionality of the critical value of N with m implies that for
lo~er values of m, which are more realistic, the critical
size will be considerably larger. For example, if the slid-
ing velocity at an interface is 1 cm/sec and the relevant
length scale of the potential fluctuations at the interface
is approximately 10 cm (this is the lower limit), co

would be about 6 x 10 rad/sec. Since the frequency scale
in the present calculations co] is of the order of 10'
rad/sec, we would expect on the basis of the apparent in-
verse proportionality of N with co that the critical N
would be about 10, which is a reasonable size for a
mesoscopic system. This behavior can be understood
qualitatively on the basis of Chirikov's overlap of reso-
nances criterion because as the system size increases, the
spacing of the vibrational modes decreases. The present
calculations give a dependence which is an inverse pro-
portionality of the critical N to co, whereas a calculation
based on Chirikov's overlap of resonance criterion gives a
much stronger frequency dependence [5], but Chirikov's
method does predict the general result that the critical N
decreases with increasing m. The calculations presented
here were done at zero initial temperature. At higher ini-
tial temperature, the transition from nondissipative to dis-
sipative behavior occurs for smaller solids and smaller
values of A and m, as expected [g].

The one-dimensional chain diff'ers in a qualitatively im-
portant way from higher dimensional models in that
~hereas the modes in this model are all nondegenerate, in
a higher dimensional solid the vibrational modes are in

general degenerate. The existence of degeneracy of the
resonances is believed to make it more likely that a sys-
tem will be chaotic [6]. Therefore, an anharmonic ver-
sion of the two-dimensional square lattice considered in
Ref. [2] was studied. The equation of motion for this
model is

mu~I = fLq(rj+ ~ I
—rl —

~) +fU (rj I
—ri- ~ I ) fLq(r, , I+ i rq, I—) +fu(rq, ( ri I —i )+6(jv~osin(cor+xj), (2)

where r~ I =(ja+uj I la) and fLq(r) is the force due to
the Lennard- Jones potential between atoms a distance r
apart and Xo is the strength of a harmonic force acting on
the atoms at one edge of the solid (at l=N) to simulate
approximately the force of a second solid of lattice con-
stant 2a which is sliding relative to this solid. In this
model the atoms are only allowed to move in the direction
parallel to the edge at I=N for simplicity. (The contri-
bution to the dissipation from motion in the y direction is
of the same order of magnitude. ) Results for this model
(with XO=0.09425aa) shown in Figs. 1(e) and 1(f) indi-

cate that a transition from dissipational to dissipationless
sliding occurs in this model similar to that found for the
one-dimensional chains studied.

In order to give further insight into the nature of the
transition to dissipative behavior, the time Fourier trans-
form of the velocity-velocity correlation function for one
of the systems which shows ergodicity is shown in Fig. 2.
As can be seen, when the system is ergotic many modes
become excited, as expected, whereas when the motion is
not ergotic the motion remains concentrated mainly in

one or two modes. These calculations were performed by
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fi t inte rating the equations of motiotion for 1.25 & 10
time units. The equations were then integratedd for anoth-
er 200 time units and the velocity-velocity correlation
function was ca cu
tern and Fourier transformed using a stan ar a

for other atoms, giving results which were quualitatively
'1 to those shown in Fig. 2. s can e seen, the

Fourier transformed correlation function for a is py, ' F' 2( ) exhibits many peaks, whereas
the same quantity for a nondissipative system, shown in

Fi . 2(b), exhibits only one peak. This supports our hy-

othesis that energy gets distributed among many phononpot esis a
modes in the dissipative case, whereas it rem

'
mains concen-

trated main y in od
'

1
'

one mode in the nondissipative case.
In Fig. 3, the difference in the distance in t e
dimensional phase space betwee pim

*
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t different close lying initial points in phase
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detail the behavior of the KAM surfaces es because they
have high dimensionality [6,10].

Th 1 lations presented in this Letter were done one ca cu
d 1 f r friction between small solids sliding re

odel couldto each other, but calculations on the present mode

also describe the damping of an atom excited y fer-
this case, the driving force isromagnetic resonance. In this

ic modes of thed d b the interaction of the magnetic m
us a simi-ion with the vibrational modes of the solid. Thus,

lar lack of dissipation in small so1ids excited by ferromag-
netic resonance s ou a soh ld iso be a possibility. Furthermore,

~ 0 fthe possibi ity exis s1
'

t that these results might a so ho
the dissipation is caused

' t' caused by the excitation o other types
of excitations, suc ash as spin waves, which can a so e ap-

a am li-proximate y ad b h rmonic oscillators in the sma amp i-

tude limit, and which are believed to be damped by spin-
wave-spin-wave scattering caused by nonlinearity, which

b ted as noninteracting harmonic osci lators. It is
not clear at this point whether the ease with whic sma
atomic clusters diffuse on a surface, which has been o-
served in the past [11], is due to the phenomenon dis-
cussed in this Letter (i.e. , the occurrence of low dissipa-
tion in small solids) or to the occurrence of low activation
energies.
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