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Anyon in an External Electromagnetic Field: Hamiltonian and Lagrangian Formulations
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We propose a simple model for a free relativistic particle of fractional spin in 2+1 dimensions. Using
the Hamiltonian formulation with the set of constraints, we introduce the electromagnetic interaction of
a charged anyon and obtain the Lagrangian. The Casimir operator of the extended algebra, which is the
first-class constraint, is obtained and gives the equation of motion of the anyon. In particular, from the
latter it follows that the gyromagnetic ratio for a charged anyon is 2 due to the parallelness of spin and
momentum of the particle in 2+1 dimensions. The canonical quantization is also considered.

PACS numbers: 11.10.Ef

l. Introduction. —The existence of anyons or particles
with arbitrary spin and statistics in 2+1 dimensions [1]
has been attracting a great deal of attention due to the
applications to different planar physical phenomena such
as the fractional quantum Hall effect and, possibly, high-
T, superconductivity and to the description of physical
processes in the presence of cosmic strings. Several
field-theoretic models have been proposed, in which
anyons appear as topological solitons [2,3] or electrically
charged vortices [4,5]. In another approach, point parti-
cles, described by scalar or spinor fields, are coupled
minimally to a U(1) gauge field, the so-called statistical
gauge field, whose dynamics is governed by the Chern-
Simons action [6]. However, none of the above models
gives a description for a free particle with arbitrary spin.

In a field-theoretical context, it was first pointed out in

[7] that the angular momentum of single-particle states
can have fractional values in 2+1 dimensions. Recently,
in Refs. [8,9] the field equations for a free particle with
fractional spin were proposed and it was shown that their
solutions realize the one-particle states as the appropriate
induced representation of the Poincare group in 2+1 di-
mensions. In addition, in [8] the corresponding classical
action for the fields was constructed by analogy with the
action of the massive vector field. Reference [10] dealt
with the same problem, but started from the description
of the classical action for a relativistic particle with fixed
mass and fixed arbitrary spin. There the set of Hamil-
tonian constraints was found and two different schemes of
the canonical quantization of the model were considered.
However, no interaction of anyons with the electromag-
netic field has been considered in the above-mentioned
works.

In the last few years the properties of anyons in exter-
nal electromagnetic field have been studied [11—15]. In

particular, in Ref. [11], using the approach of coupling
fermions or bosons to a statistical Chem-Simons field, it
was shown that one-anyon states acquire an induced
magnetic moment consistent with a value of g =2 for the
gyromagnetic ratio. In Ref. [13] based on heuristical ar-
guments an equation for anyon in a constant magnetic

field was assumed for the description of relativistic frac-
tional quantum Hall eftect. In a recent paper [15], the
electromagnetic interaction of anyons has been con-
sidered on the basis of classical analogy with the behavior
of spin in an electromagnetic field and intuitive argu-
ments.

In this Letter we propose Hamiltonian and Lagrangian
descriptions for both a free and an interacting (with elec-
tromagnetic field) relativistic particle with fractional
spin. Our derivations are based on the imposed con-
straints and the algebraic properties of the system, name-

ly, on the invariants, Casimir operators, of the corre-
sponding extended algebra.

2. Free relativistic particle with fractional spin. —We
consider first a simple model of a relativistic particle in

2+1 dimensions, described by the action

I=„ I dr,
where

L =m(xn)/Jn (2)

[x„,p,j = —g„„, [n„,p,'"'j = —(g„,+n„n, ),

[x„,x,j = [p„,p,j =0, [n„,n, j = [p„'"',p,'"'j =0.
(3)

is the Lagrangian, i is an evolution parameter, x" are the
coordinates of the particle, p =0, 1,2, and the dot denotes
the derivative with respect to r. We assume n" to be a
timelike vector and then the auxiliary unit vector n" will

be spacelike (n = —I ). The latter, as we shall see
below, serves to describe the spin degree of freedom of
the particle. We shall take the metric as g„,
=diag(1, —1, —1). Finally, m is a parameter with di-
mension of mass. The constants 6 and c are set to unity.

Let us now consider the Hamiltonian formulation of
the system in order to show that our proposed Lagrangian
(2) indeed describes a free relativistic particle of mass m
with arbitrary spin. With this aim we introduce the
canonical momenta p„and p„", conjugated to the gen-
eralized coordinate x„and n„, respectively, which satisfy
the canonical Poisson brackets (PB):
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From the Lagrangian (2) we obtain the momenta,

mnp

Bx" j 2
(4a)

can pass now to the Dirac quantization [16] of the system
described by the Hamiltonian (6) with the set of con-
straints (5). The second-class constraints (Sb) and (5c)
define the so-called Dirac brackets, which give the com-
mutation rules:

() BL m

an

(xn)ri„

n
(4b) [xp xy] lGpyi 2 ) [xp py] igpy

p
Equations (4) together with the condition nri =0 lead to
the primary constraints [16],

N] =p m =0, (sa)

v ) =(pn) =0,
v2=(pp'"') =o.

(sb)

(sc)

H =A)@)+k)pt+k2p2,

where A~( z), k~( z), k (2z) are the Lagrange multipliers
(A; is associated with the first-class and Xz with the
second-class constraints, hereafter). Let us introduce
now, in 2+1 dimensions, the spin vector S„by analogy
with the orbital angular momentum,

v (n)X (7)

where e„„i is the totally antisymmetric tensor (ep~q=l).
The vector S„ in (7) is in fact a generator of the Lorentz
transformations for n„and the conjugated momentum

(n)
p o

From (7) it follows that

[s„,s„]=~„„,s'. (8)

The quantity M„„=x„p„—x,p„+n„p," —n,p„" is the
conserved total angular momentum tensor. It is easy to
show that Eqs. (5b) and (Sc) imply that e„„iS'p =0; i.e. ,
the spin vector S" is parallel to the momentum p„ in 2+1
dimensions. Thus, we can write

S"= —ap"/Jp (9)

where a is an arbitrary constant [in principle, it could be
a function of z, but from the equations of motion (10) it
follows that a=0], which fixes the spin of the particle.
From the Hamiltonian (6) [or equivalently from the La-
grangian (2)] and the definition of (7) we obtain the fol-
lowing equations of motion:

p„=0, S„=O; (i o)

i.e., the model describes a free relativistic particle of mass
m with any arbitrary spin due to the fact that the param-
eter a does not appear explicitly in the Lagrangian. We

The mass-shell condition (Sa) is a first-class constraint
(i.e., its PB's with all the constraints of the system van-
ish), while (5b) and (Sc) are second-class constraints
since 4~,y2] = —p = —m ~0. It is also straightfor-
ward to rove that the canonical Hamiltonian H, ,„
=xp+rip " L is equa—l to zero and, consequently, the
total Hamiltonian of the system is a linear combination of
the constraints (5),

[p„,p„] =0, [n„,n, ] =0, [p„'"',p,'"'l =0,

[n„,p, ]= i g—„„+n„n„(n) ~

2 ppp~
p

The first-class constraint (Sa) turns into the equation
specifying the physical quantum states of the system:

(p' —m') y=0. (i 2)

Note also that the spin operator (7) commutes with the
constraint (5a) and therefore it is a physical observable of
the theory.

Now we shall consider the model in which the spin of
the particle is fixed (it enters explicitly as a parameter in

the Lagrangian). With this aim, in addition to con-
straints (5), we introduce a new first-class constraint,

N2 =Sp+ em =0, (i3)

(p —m )y=o, (Sp+am)y=o, (i6)

where 5„ is given by Eq. (7). [A diA'erent model with
more constraints than (5) and (13) was proposed in [10],
leading to a diAerent Hamiltonian and Lagrangian.
However, in that model x„&0. In our proposed model
x„=0 and consequently, x„describes the space-time
coordinate of the free particle. ] The first-class con-
straints (5a) and (13) are the invariants (Casimir opera-
tors) of the Poincare algebra in 2+1 dimensions [8,17].
The requirement (5a) is the mass-shell condition and Eq.
(13) specifies the helicity, with a an (arbitrary) value of
spin. Note also that the set of constraints (5) and (13)
leads to the relation (9).

We take as the total Hamiltonian of the system the
linear combination of the primary constraints (5) and
(i 3),

0 =A)@)+A2@2+X)p)+k2p2

(with 0„,„=0). Performing the inverse Legendre trans-
formation, we find the Lagrangian

(xn) —(s„,i„x"n'n + an /m)L=m (is)
n

By direct verification one can show that Lagrangian (15)
leads to the set of constraints (5) and (13) as primary
constraints and that no secondary constraints appear in

the model. The corresponding canonical Hamiltonian is
equal to zero.

In the Dirac quantization scheme, the first-class con-
straints (Sa) and (13) define the equations for the physi-
cal quantum states of the system [8,10],
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while the second-class constraints (5b) and (5c) give the
commutation rules (11). Since under quantization no re-
strictions on the parameter a appear, the physical states
described by the wave functions (16), are the states of a
particle with mass m and arbitrary spin u. It is straight-
forward to verify that the equations of motions (10) are
also satisfied in this case.

Thus we have shown that Lagrangians (2) and (15) de-
scribe a free relativistic particle with arbitrary spin, with
the only difference that in the case of Eq. (2), the spin of
the particle is not fixed in the theory, while Lagrangian
(15) depends explicitly on the value of spin a.

3. Anyon in external electromagnetic field —Let u. s

study now the problem of introducing the interaction of
electromagnetic field with a fractional spin particle. By
analogy with the noninteracting case [8], where the one-
particle states are specified by values assigned to the in-
variants (Casimir operators) of the Poincare algebra, we
shall define the single-anyon states in a constant elec-
tromagnetic field as the unitary representations of the
relevant operator algebra in 2+1 dimensions. For a uni-
form constant electromagnetic field, the corresponding
extended algebra has the form

[S„,s„]=ic„„gs, [S„,tr, l =ic„„gtr, [S„,F„]=ic„„i,F
(17)

[tr„,tr„] =iec„„i,F, [try, F,] =0, [F„,F,] =0,

(18a)

(18b)

(18c)

p) =(trn) =O,

~, =(~pt &) =o,
where S„ is defined as in (7). The second-class con-
straints (18b) and (18c) imply that the spin vector S„ is
parallel to the momentum n„and we can write

S„=—an„/~~'.

Now we define the total Hamiltonian of the system as
follows:

H =Ai&i+X]p]+g2p2, (2o)

where z„=p„—eA„, 2„=—
2 F„,x' is the vector poten-

tial, Fq= 2 cq„„F"', and F„, is the uniform constant elec-
tromagnetic field tensor, F„„=B„A„—8„A„.

We can prove that the operator tr —2e(FS) is the
Casimir of the algebra (17). Therefore, in the classical
theory we can take the quantity tr —2e(FS) —m as the
corresponding first-class constraint. We will suppose this
constraint to be valid even for a nonuniform field F„.
(This assumption leads as well to the correct equations of
motion in a nonuniform external electromagnetic field
[see Eqs. (22)].) We replace the set of constraints (5) by
the following one:

&P~ =tt —2e(FS) —m =0,

the equations for the Lagrange multipliers Ai and Xi 2 be-
come polynomials of high degrees. However, keeping
only the terms up to linear approximation in the field
strength F„, we can perform the inverse Legendre trans-
formation to obtain the Lagrangian

~ ~

m
(21)

where S„ is defined in (7) with p„" given by (4b). (In
addition, this linear approximation in the field strength
provides us with the possibility to compare our results
with the ones obtained previously in the literature in the
same approximation. ) The equations of motion, which
follow from (20) [or equivalently (21)] read as

ti„= F„,tr'+——S' B„F,, (22a)

~ e
Su Feverm

(22b)

Let us now consider the quantization of the system, fol-
lowing the Dirac method [16]. The second-class con-
straints (18b) and (18c) can be used to obtain up to
terms linear in F„ the following commutation rules:

S (Fs)
[x„,x,] = i c„,i. , 1

—e-
l'' r' (23a)

which are the ones obtained in [15] by following a
diAerent approach. The first term in the right-hand side
of Eq. (22a) is the Lorentz force, while the second one
corresponds to the coupling of the dipole moment to the
gradient of the field. Equation (22b) is the Bargmann-
Michel-Telegdi equation in 2+1 dimensions for the pre-
cession of the spin in an external electromagnetic field
[18]. From the latter equation it follows that the
gyromagnetic ratio for anyons is g =2 (see also [11,15]),
a fact which is a direct consequence of the form of the
Casimir operator of the algebra (17). Note also that we
can come to the same conclusion from the system of con-
straints (18). Indeed, if one takes N~ in the form
@~ =tr —2eg(FS) —m =0, with rt a constant, it turns
out that @i is a first-class constraint if and only if @=1.
Thus, g =2 due to the parallelness of spin and momentum
in 2+ 1 dimensions [guaranteed in our case by the
second-class constraints (18b) and (18c)] and due to the
fact that @i should be a first-class constraint.

It is interesting to notice that if we identify the timelike
vector n„with x„by setting n„= —x„, the Lagrangian
(21) coincides with the standard Lagrangian (in this case
in any dimension) for a spinless charged particle in an

electromagnetic field,

L = —m Jx +eAx.

where H„.„ is taken to be equal to zero; +i,pi, p2 are
given by Eqs. (18) and A~, X~,X2 are the Lagrange multi-
pliers. In this case, unlike the free one, we cannot find
the exact analytic expression for the Lagrangian, since

(Fs)
[x„,tr„] = ig„„ 1

—e—, +ie z'

[tr„,tr„] =tee„,i F =ieF„„,

(23b)

(23c)
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[n n ] =0 [p "
p

" ] =0 (23d)

[n„,p, " ] = i (—g„,+n„n„)+i
2

1
—e . (23e)(„) tr„tr, (FS)
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The first-class constraint (18a) is imposed as an operator
on the physical quantum states giving the equation

[tr' —2e(FS) —m'] tlt =0. (24)

This equation was heuristically assumed in [13] for an

anyon in a constant magnetic field in the context of rela-
tivistic fractional quantum Hall eAect and recently it was
obtained in [15] by introducing the minimal coupling
with the electromagnetic field in the symplectic structure.
As was shown in [15], the nonrelativistic limit of Eq. (24)
gives for the magnetic moment of the anyon p = —ea/m
and we see again that g =2.

It might be interesting to mention here that in the
linear approximation in the field F„ the Lagrangian (21)
can be obtained from the free Lagrangian (2) by the fol-

lowing substitution:

e xnx x +-
m

(25)
e . 2 e xn

n n +—nP P F,n'.pv

Finally, some remarks are in order concerning the possi-
ble extension of the model described by Lagrangian (15)
to the case with electromagnetic interaction. The intro-
duction of a new constraint @2=Sz+am =0 together
with Eqs. (18) will lead to a contradictory system of con-
straints. [The new constraint Nz =Str+am =0 cannot be
first class, since not all its PB's with the other constraints
(18), namely, with (18b) and (18c), vanish. Considering
it as second class would form together with (18b) and
(18c) a total odd number (three) of second-class con-
straints which is not possible, unless one adds another
second-class constraint. ] In order to obtain a consistent
theory, where the spin parameter a appears explicitly in

the Lagrangian, we are forced to modify the set of con-
straints. This question is under study. The formalism
presented here can also be applied to the spinning parti-
cles in an external field in 3+ I dimensions (cf. [19]).

We can also treat the electromagnetic field as a
dynamical variable by adding to the Lagrangian (21) the
usual term —

4 F„,F"' and construct the quantum elec-
trodynamics for anyons. Another interesting problem is
to formulate the quantum version of the theory in terms
of path integrals.
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