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The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis
that the quantum state is a functional on the space of closed three-geometries, with each black hole con-
nected to an oppositely charged black hole through a spatial wormhole. From this starting point a sim-
ple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics.
Rather, they obey an exotic variety of particle statistics known as “infinite statistics” which resembles
that of distinguishable particles and is realized by a g deformation of the quantum commutation rela-

tions.

PACS numbers: 04.60.+n, 05.30.—d, 97.60.Lf

Semiclassical calculations [1] indicate that the mass of
a charge Q black hole will decrease via Hawking radia-
tion until it reaches a critical value proportional to Q.
The resulting “extremal” black hole appears to be a
quantum mechanically stable object (in a world in which
there are no elementary particles with mass less than
OM pianck). Extremal black holes have been found to be a
useful item in the gedanken laboratory for studying the
quantum mechanics of black holes. Their utility derives
from the fact that, for large Q, they are macroscopic ob-
jects whose behavior should be governed by (hopefully)
well-understood laws of low-energy physics. Thus the
short-distance problems of quantum gravity might be di-
vorced from the quantum puzzles of black holes. In the
last several years there has accordingly been much pro-
gress in understanding the scattering of low-energy parti-
cles by extremal black holes [2].

In this paper we shall consider a different process: the
scattering of two extremal black holes. There are many
interesting aspects of this problem, but we shall consider
here only the zeroth-order question, “Do they scatter as
bosons, fermions, or something else?”” We shall argue
that at least in some cases the answer is “something else.”

In nongravitational field theories, it was shown long
ago by Finkelstein and Rubenstein [3] that soliton statis-
tics can be determined from the fact that the quantum
state is a functional (or more generally “sectional”) on
the space of field configurations. For example, double ex-
change of a pair of Skyrmions is an operation which is
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continuously deformable to the identity, while single ex-
change is an operation which is continuously deformable
to a 2z rotation of a single Skyrmion. Thus the exchange
operator 6 must have eigenvalues either plus or minus |
(since it squares to the identity) and the solitons may cor-
respondingly be either bosons or fermions. Since & is
continuously deformable to a 27 rotation of a single Skyr-
mion, the eigenvalue is connected with the angular
momentum of the Skyrmion wave function, in accord
with the expected spin-statistics relation [4].

If the soliton has no internal states, then the exchange
operator & will commute with every operator in the
theory simply because it does not change the physical
field configuration. This has the consequence that the
eigenspaces of & are superselection sectors: Bosons are
forever bosons and fermions are forever fermions. If the
soliton does have internal states then & may or may not
change the field configuration, depending on whether or
not the solitons are in the same state. & will then obey a
composition law with those operators which act on the
internal state reflecting the statistics of identical particles
with internal degrees of freedom.

The application of these ideas to quantum gravity is
developed in a series of beautiful papers by Friedman and
Sorkin [5]. In quantum gravity, the wave function must
be invariant under all diffeomorphisms which are asymp-
totically trivial and can be continuously deformed to the
identity. The square &2 of the exchange operator acting
on two identical solitons is in this category, but & itself is
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in general (depending on the soliton in question) a non-
trivial “large” Z; diffeomorphism. These considerations
alone may allow either Bose or Fermi statistics but, be-
cause observables must commute with large diffeo-
morphisms, the statistics form superselection sectors. In
some cases the statistics can be fixed by consideration of
the soliton creation process [6].

We wish to apply these ideas to the problem of charged
extremal black hole statistics. The first issue is the
relevant space of three-geometries.

Perhaps the first possibility which comes to mind is to
consider three-geometries with a boundary at each black
hole horizon. One must then decide whether or not these
boundaries are distinguishable, which is completely
equivalent to deciding the statistics. So nothing is
learned in this approach.

It is preferable to formulate the problem in terms of
three-geometries without boundaries. Because of flux
conservation, the two-sphere surrounding the black hole
cannot be topologically trivial (assuming there are no
charged sources). In this paper we will investigate the
consequences of the assumption that the flux reemerges
elsewhere in our (or possibly another) universe out of an
oppositely charged extremal black hole. The relevant
space of three-geometries is then R> with N handles
whose cross sections are two-spheres, corresponding to N
positively charged and /V negatively charged black holes.
It is worth noting that this formulation is consistent with
semiclassical instanton calculations [7,8], which describe
creation of charged black hole pairs connected by a
wormhole in an electromagnetic field.

Yet another possibility— briefly discussed below—is to
allow the flux to end at a ’t Hooft-Polyakov monopole or
an electric charge inside the horizon. This formulation is
inherently more complex as it necessarily involves time-
dependent three-geometries. However, because these
descriptions differ only behind a horizon, one may hope
that they lead to the same observable consequences.

We further want to consider only extremal black holes
with a unique ground state, to avoid complications of the
exchange operator mixing up internal states. [A finite de-
generacy (e.g., as suggested by the Bekenstein-Hawking
entropy) would not qualitatively affect the discussion.]
This is quite different from (though of course relevant to)
the situation considered in [8], wherein extremal black
holes were excited in various ways by low-energy scatter-
ing of massless fermions. In a theory with no massless
fermions or scalars, there is an energy barrier to throwing
matter into the black hole, and it should be possible to
scatter black holes at sufficiently low energies without ex-
citing any internal degrees of freedom.

The basic point is now very simple. Black hole ex-
change is the exchange of two wormhole ends. This re-
sults in a new three-geometry: It is not a diffeomorphism.
Quantum mechanics does not require that the wave func-
tion should have any particular symmetry properties un-
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der this operation. The wave function of NV like-charge
black holes will be a general function w(x;,...,xy) of
their N positions. Extremal black hole scattering will
resemble that of distinguishable particles: It is also the
case that the wave function for /V identical particles with
more than /N internal states is a general function
w(xy,...,xy) if none of the N particles are in the same
internal state. The low-energy experimentalist who dis-
covers the extremal black holes might believe that she has
found a new type of massive particle with a large number
of degenerate internal states. However, no matter how
long she searches, two particles in the same internal state
(i.e., that scatter like identical particles) will never be
found.

While black hole exchange is not a large diffeomorph-
ism, wormhole exchange is. This involves the simultane-
ous exchange of a negatively charged and a positively
charged black hole pair. A priori the eigenvalue of the
wormhole exchange operator &, may have either sign.
However, as in previously studied examples [6], the sign
is fixed by consistency with the rules for pair creation. In
[71 an instanton was found describing single wormhole
creation in a magnetic field. To get the creation rate one
must exponentiate the single instanton. In so doing one
counts only once the four-geometries which differ by
wormhole exchange on the final three-geometry. Thus it
is implicit in this calculation—which led to reasonable
results—that &, has eigenvalue +1. We shall hence-
forth assume the wormholes are bosons. (This is also
consistent with the spin-statistics relation, since the single
instanton creates the wormhole in a state invariant under
27 rotations.)

One might expect that the Bose nature of black hole
pairs would lead to observable consequences. In order to
scatter two wormholes one must first locate the two
charge — Q partners of two charge + Q black holes. One
might attempt to do this by shining a flashlight in one end
of the wormhole and seeing where the light reemerges.
Of course classically this is prohibited by causality:
There is a horizon in the middle of the wormhole (al-
though the spacelike slice containing the wormhole may
cross a pair of horizons without entering into a region of
trapped surfaces, as in the ¢ =0 slice of maximally ex-
tended Schwarzchild). This is a special case of more gen-
eral “topological censorship” theorems [9]. The gist of
these theorems is that classically it is impossible for an
external observer to detect nontrivial topology.

If topological censorship were not generally valid,
many pathologies would arise. For example, wormhole
traversal might be used for time travel [10]. Thus it is
natural to assume that quantum topological censorship is
valid as well. In this case one can never locate the other
end of a given extremal black hole and observe Bose
scattering of wormholes.

One might be concerned that if extremal black holes
are quantum mechanically similar to elementary particles
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with an infinite number of internal states they will share
with the latter object an infinite pair-production rate.
Our description of extremal black holes is consistent
with—indeed was inspired by—the description of quan-
tum gravity transition amplitudes as sums over ine-
quivalent four-geometries. Euclidean instanton methods
were used in [7,8] to argue that this prescription leads to
a finite (and semiclassically computable) pair-production
rate. Thus—at least in this description—the quantum
mechanics of extremal black holes differs in this regard
from that of an object with an infinite number of internal
states. Indeed, the experimentalist who tires in her
search for two objects that interfere like identical parti-
cles might learn that she is on the wrong track by
measuring the pair-production rate.

The arguments given herein mesh well with, and are in
a sense an extension of, those given in [8]. In [8] we con-
sidered (in a theory with massless fermions) the possibili-
ty that information lost in low-energy particle-hole
scattering might be stored in the form of an infinite de-
generacy of zero-energy black hole states in which the
matter fields are excited behind the horizon. One might
expect that this information could be recovered by quan-
tum interference experiments. It was argued [8] that in
fact causality dooms such experiments to failure, and
black holes will always scatter as distinguishable parti-
cles, even if they are initially in the same zero-energy
state. In this paper we have argued that even extremal
black holes with no internal excitations scatter as distin-
guishable particles. Adding the possibility of internal ex-
citations would not alter this conclusion, so our results are
consistent with the causality requirements of [8].

Let us now briefly consider a description of extremal
magnetic black holes in which there are no wormbholes,
and magnetic flux is terminated at a 't Hooft-Polyakov
monopole. In a theory with the grand unification mass
M Gut > Mppanck (although this makes sense classically, it
is far from clear that there is any quantum mechanical
meaning to a particle with Compton wavelength less than
its Schwarzchild radius), a smooth, slowly varying field
configuration with nonzero magnetic charge will in gen-
eral collapse to form a magnetic black hole, which will
then Hawking radiate down to extremality. The exterior
of the black hole configuration will then be static, but the
interior will continue to evolve.

In this system the topology of a spacelike slice with a
collection of black holes is simply R 3, provided we contin-
ue the spacelike slice inside the horizon in such a way so
as to avoid any singularities. An extremal black hole is
therefore represented as an object with many internal
states, associated with the degrees of freedom inside the
horizon. In the scattering of two like-charge extremal
black holes, those internal states cannot be observed and
should therefore be traced over. In general the scattering
will therefore resemble nonidentical particles. However,
a better understanding of the dynamics is required to un-

derstand to what extent this description of black hole
scattering is consistent with the previous one.

One might attempt to obtain a quantum field theoretic
description of extremal black holes in which they are
treated as point particles. (However, we wish to stress
that since black holes are gravitational solitons rather
than fundamental particles, it is not clear how far such a
description can be pushed. For example, second-
quantized descriptions of grand unified theory monopoles
have only a limited validity.) A classification of all possi-
ble particle statistics consistent with general principles of
quantum field theory was obtained by Doplicher, Haag,
and Roberts [11]. In addition to recovering Bose statis-
tics, Fermi statistics, and parastatistics (which is related
to internal color) they found an additional, less familiar,
possibility: “infinite statistics.” A collection of particles
which obey infinite statistics can be in any representation
of the particle permutation group. These are evidently
the statistics obeyed by extremal black holes.

More recently it was realized [12] that a Fock-like
realization of infinite statistics can be obtained from a g
deformation of the commutation relations:

akaf —qafak =6kl » €))

where k,/ may be viewed as labeling spatial momenta.
(This should not be confused from the g-deformed quan-
tum theory of [13] which, after second quantization,
leads to negative norm states [14].) ¢ = = 1 corresponds
to bosons or fermions, while other cases correspond to

“quons.” States are built by acting on a vacuum which
obeys
axl0)=0. )

It follows from (1) and (2) that for —1 <g < 1 one can
form N! linearly independent states from N oscillators
a;jl s a;:rN if the k; are all different. (In the Bose or Fer-
mi case there is only one independent state.) This is easy
to see for the special case ¢ =0 for which (1) reduces to

aka1t=5k/ . 3)

It follows that the inner product of two N-particle states
is
<0|ak~ cee aklaﬂ‘l R al:,|0>=5k.1, < Okply - 4)

Thus two states obtained by acting with the /V oscillators
in different orders are orthogonal. Thus— as for extremal
black holes— the states may be in any representation of
the permutation group.

It was noted in [12] that the theory of quons contains
some mild forms of nonlocality. For example, the expres-
sion for the Hamiltonian is both nonlocal and nonpolyno-
mial in the field operators. Nevertheless cluster decom-
position, CPT, and an analog of Wicks theorem were
found to hold. It is not clear if quons lead to physically
unacceptable forms of nonlocality. Perhaps the nonlocal-
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ity discussed in [12] is related to the fact that wormholes
connect spacelike separated points, and can be eliminated
by superselection rules arising from topological censor-
ship.

In summary, we believe that understanding the quan-
tum statistics of extremal black holes is a key ingredient
for unraveling quantum black hole puzzles. We have ar-
gued that, at least in one description, extremal black
holes behave very differently from elementary particles.
It is far from obvious that this description is appropriate
to the real world. Nevertheless we feel it is a logical
possibility— apparently consistent with quantum mech-
anics—that our Universe contains fundamental entities
which are neither fermions nor bosons, but rather are
quons.
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