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Influence of Gap Extrema on the Tunneling Conductance Near an Impurity
in an Anisotropic Superconductor
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We examine the effect of an impurity on the nearby tunneling conductance in an anisotropi-
cally gapped superconductor. The variation of the conductance has pronounced spatial dependence
which depends strongly on the Fermi surface location of gap extrema. In particular, different gap
symmetries produce profoundly different spatial features in the conductance. These effects may be
detectable with a scanning-tunneling-microscope study of the surface of a high-temperature super-
conductor.

PACS numbers: 74.50.+r, 74.80.—g

Any well-developed theory of high-temperature super-
conductivity must predict the symmetry of the energy
gap. Some proposals, including the strongly coupled
phonon-mediated pairing which causes superconductivity
in ordinary metals [1], yield isotropic or nearly isotropic
gaps. The dominant characteristic of the pairing interac-
tion in this model is retardation. In the low-temperature
superconductors this is reflected in the frequency depen-
dence of the superconducting gap and clearly shows that
phonons mediate the pairing.

For a nearly half-filled Hubbard model, approxima-
tions involving the exchange of para-antiferromagnetic
spin fluctuations give rise to an effective electron-electron
interaction which has a characteristic momentum depen-
dence, peaking near the antiferromagnetic wave vector [2,
3]. A similar momentum dependence has been found in
Monte Carlo simulations [4]. Such an interaction favors
d~~ „~pairing and gives rise to a momentum-dependent
gap which has four nodes.

Gap-measurement techniques that were introduced
and developed for use on electron-phonon superconduc-
tors measure accurately the frequency structure of the
gap. Among these are the voltage dependence of the
tunneling I(V) characteristic into the homogeneous su-
perconductor [5) and the frequency dependence of elec-
tromagnetic absorption [6]. If, however, the gap has
strong momentum dependence these measurements de-
pend on some momentum-averaged value of the gap.
Most of these probes [7, 8] now indicate pronounced
gap anisotropy or gapless superconductivity in the high-
temperature superconductors.

In the cuprate-oxide superconductors it would be use-
ful to have experimental information on the momentum
dependence of the gap. Certain techniques exist which
are designed to detect gap nodes on the Fermi surface.
These include measurements of the low-temperature de-
pendence of thermodynamic and transport properties,
such as the specific heat [9] and the magnetic penetra-
tion depth [10]. Here power-law dependencies on tem-
perature typically imply nodes, in contrast to the expo-
nential behavior associated with a fully gapped Fermi

surface. Measurements of these quantities proved ex-
tremely illuminating in studies of heavy-fermion mate-
rials [11]. Recent results [10] on YBa2Cus07 indicate
a low-temperature penetration depth proportional to T,
suggesting the existence of nodes.

At this time, however, only a few experiments exist
that directly measure the gap as a function of momen-
tum on the Fermi surface. Angle-resolved photoemission
(ARPES) on Bi2Sr2CaCu20s measures the magnitude of
the gap [12] with an angular resolution of about 6' and
an energy resolution of about 10 meV. A gap has been
detected with ARPES only in Bi2Sr2CaCu20s. Mea-
surements of YBa2Cus07 —Pb SQUIDs may eventually
determine the symmetry of the superconducting gap [13],
but do not provide detailed information on the momen-
tum dependence of the gap. In theory, measurements
of linewidth changes of phonons with finite momentum
have excellent angular and energy resolution [14], and
can measure the relative phase of the gap [15]. Such
measurements have yet to be done.

Here we propose that a scanning-tunneling-microscope
(STM) study of the spatial variation of the tunneling con-
ductance [16] around an impurity can be used to probe
the momentum dependence of the superconducting gap

We will discuss in this Letter those features of the
gap which produce the most profound changes in the lo-
cal tunneling conductance: gap minima and maxima. A

gap minimum or maximum on the Fermi surface produces
strikingly large conductance variations along the spatial
directions away from the impurity which are perpendic-
ular to the Fermi surface tangent at the gap extremum.
We numerically calculate the spatial structure for super-
conductors with (a) an isotropic gap, (b) a d 2 v2 gap,
and (c) an anisotropic but nodeless gap. The results are
explained by analytic forms in various limits. The en-
ergies of gap maxima and minima should be discernible
with a resolution better than 1 meV.

The feasibility of observing the local tunneling den-
sity of states with atomic resolution has been established
by STM tunneling conductance measurements near im-
purities and step edges on the surface of Cu(ill) [17).
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In addition, tunneling conductances have been obtained
with near-atomic resolution on the surface of the high-
temperature superconductor Bi2Sr2CaCu20s [18].

We assume the impurity has three possible effects on
the local environment in a superconductor: an impurity
potential 6e, a change in the superconducting gap beak
(which depends on the momentum k), and a change in
the local mass bm of the carriers. In our model each
of these is a delta-function perturbation at an impurity
site 0, perturbing the homogeneous Hamiltonian of the
bulk superconductor. An impurity would actually have
a Bnite-range effect on b~, beak, and bm, which could
be as large as a superconducting coherence length. Here
we will be concerned with conductance changes which
persist at greater distances.

Each of the perturbations contributes to the others;
for example, introducing an impurity potential will have
an effect of the same order on the gap magnitude. This
in turn affects the conductance. The precise relation-
ship between the parameters depends upon details of the
microscopic mechanism. We will use 6e and beak as phe-
nomenological parameters in our model, and assume that
they satisfy the self-consistent equations for the super-
conductor. The effect of a bm can be absorbed into be.
We thus avoid the difFiculty which results from attempt-
ing to start from "bare" impurity parameters.

The effect of the impurity perturbations on the con-
ductance under the STM tip can be calculated from the
Green's functions of the homogeneous superconductor.
These are written compactly in the Nambu formalism
[19]
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where w3 is a Pauli matrix. Since the Green s functions
only depend on ~x —x'~, the two position variables x and
x' will be replaced by ~x —x'~ below.

It is useful to express the conductance in terms of di-
mensionless quantities. We de6ne Green's functions nor-
malized by the density of states at the Fermi energy ¹,
such as go = Go/¹. Then, in terms of the normalized
coupling b~ = be¹, the conductance at r is

dI(r, V) = —Imgo (0, V) —6e Im (go (r, V) —fo (r, V) j,
(4)

where dI(r, V)/dV is normalized by the normal metal's
conductance.
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Here sk is the single-particle energy in the normal mate-
rial, Ak is the superconducting gap, x and x' are po-
sitions, w is a frequency, and V is the volume. The
conductance at a position r and voltage V is the imagi-
nary part of the upper-left entry in the Nambu matrix:
dI(r, V)/dV = —A ImG(r, r, ~ = V). Here A consists of
voltage and position-independent matrix elements and
numerical factors.

We find that the effect of bing on the tunneling con-
ductance is qualitatively indistinguishable from that of
be. Therefore, for brevity, we will present here our re-
sults on the effect of be only. The Green's function with
an impurity at 0 to linear order in be is

G(r, r, ~) = Go(r, r, ~)+Co(r, o, ~)be7-2Gro(0 1 (A)),
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FIG. 1. Normalized conductance for a unit perturbation
to the site energy be. The length scale is set by A;z . Here we
have taken a coherence length equal to 10k& . The voltage
is 1.1Ap, vrhere Ap is the gap maximum. The range of the
intensity is from —0.1 (black) to 0.1 (white). (a) Isotropic
gap, A(P) = Ap, (b) d i „2gap, A(ltI) = Ap cos2$.
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We have plotted in Fig. 1 the normalized conduc-
tance (not including the bulk term) from Eq. (4) for
be = 1 for two gaps: (a) an isotropic gap, A(P) = Ao
and (b) a d 2 y2 gap, E(P) = Aocos2$. The bias
V is set to 1.140. Strong angular dependence of the
signal in Fig. 1(b) is apparent. We have not plotted
the conductance for the anisotropic s-wave gap A(P) =
Ao(0.55+ 0.45cos4$), since at this bias voltage it ap-
pears essentially the same as Fig. 1(b). We will show
later that it can be distinguished from the d 2 „2gap at
lower bias voltages, near the anisotropic 8-wave gap min-
imum. The Fermi surface is assumed circular, although
the gap is considered pinned to the lattice. Our use of a
cylindrical Fermi surface is not a significant assumption
since, as will be explained below, the main contribution
to any signal comes from small regions of the Fermi sur-
face.

In order to illustrate the strong angular dependence
of the conductance for the d&2 y2 gap, we show in Figs.

2(a) and 2(b) the conductance as a function of distance
for two angles. The first angle, P = 0, is the direction
of a gap maximum. The second angle, P = vr/4, is the
direction of a node. For comparison we show in Fig. 2(c)
the conductance as a function of distance for an isotropic
gap.

We will now analyze the pronounced spatial variation
in Figs. 1 and 2. It is straightforward to reduce the in-
tegrations for the Green's functions to angular integrals.
The result is essentially a line integral of an exponential
along the energy contour surface ~sg~ = u The. main con-
tribution to such an integral comes from regions of the
contour surface where the curvature of the exponentiated
factor is small. This occurs near gap minima and maxima
when Eo ( cu. The integration near these regions pro-
vides most of the variation in the tunneling conductance
and we find the following form [20] for the local contribu-
tion to the conductance in a d 2 y2 superconductor for
Ao ( V:

dl(p, Po, U) —~He ( U2

dV 2pcosgon+ (V
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FIG. 2. Same function as Fig. l. (a) Radial plot of the
change in the conductance due to b~ along the high-signal
direction P = 0 for the d ~ „~gap. (b) Radial plot along the
low-signal direction, P = vr/4. (c) Radial plot for the isotropic
gap. The scale is the same for all three plots.

where we define p(cos Po, sin Po) = k~r. For brevity, the
solution for —m/4 ( Po ( vr/4 is presented above. All
other angles Po can be mapped into this region. AP is
a p-independent angle and o.~ are the curvatures at the
extrema for states above (+) and below (—) the Fermi
surface (with the position-dependent factor pcos Po fac-

tored out).

P~ +24
o~ (6)

v~ k~ (V~ —Ao2) & Pg

where p~ = 1 + 2(V2 —42)iI2/v~k~ 1. The con-
ductance in Eq. (5) has oscillations whose wavelength
and amplitude depend on the bias. This bias dependence
should help screen out spurious effects.

The isotropic-gap superconductor has no Fermi sur-
face location where the curvature becomes smaller than
elsewhere. Thus we find, as shown in Fig. 2, that
the amplitude of the conductance variations is larger for
the dz2 y2 gap in the spatial direction corresponding to
a gap extremum than the amplitude for the isotropic
gap. The conductance for the isotropic-gap supercon-
ductor is given by the expression in Eq. (5) with the
sin (p sin PoAP)/(p sin PoAP) and cos Po factors absent
and a~ = P~/2.

In Fig. 3 we show the normalized conductance for
the anisotropic 8-wave gap and the dz2 y2 gap at a bias
V = 0.166o (this is just above the minimum gap for the
anisotropic s-wave gap). The isotropic gap is not shown
because there is no variation in its conductance due to
the impurity at this bias. Figures 3(a) and 3(b) show the
change in the tunneling conductance for the anisotropic
s-wave gap as a function of distance in the direction of
the gap minimum and maximum, respectively. The bias
is close to the minimum, so there is a long-range enhanced
signal only for (a). En contrast to (a) and (b), the change
in conductance for the d 2 „2gap in the same directions,
shown in (c) and (d), is small.

Here we have shown that there is a characteristic struc-
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FIG. 3. Normalized conductance for a unit perturbation
to the site energy bi. Here the voltage, 0.16~0, is just above
the gap minimum for the case of an anisotropic s-wave gap
A(P) = Ao(0.55+ 0.45cos4$). Radial plots of the change
in conductance due to be for the anisotropic s-wave gap are
shown in the direction of the gap minimum (a) and gap rnax-
imum (b). Since the bias is close to the minimum, only (a)
has a long-range enhanced signal. For comparison, the same
functions for the d ~ „~gap are shown in (c) and (d). Com-
pared to (a), all three of (b), (c), and (d) are small. Thus we
find a strong dependence of the tunneling conductance on gap
minima, similar to the dependence on gap maxima shown in

ture in the local conductance at bias voltages near gap
minima or maxima which can be used to probe the mo-
mentum dependence of Ak. Thus one can obtain infor-
mation about the symmetry of the gap. Beyond this,
we believe that scanning tunneling microscopy of the lo-
cal density of states around an impurity site can provide
detailed information about both the momentum and fre-
quency dependence of the gap. This would provide a
means of determining both the momentum and frequency
dependence of the interaction responsible for pairing in
the cuprate superconductors.
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