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We study underdamped Josephson junction series arrays that are globally coupled through a
resistive shunting load and driven by an rf bias current. We find coherent, ordered, partially ordered,
and turbulent regimes in the I-V characteristics. The ordered regime corresponds to giant Shapiro
steps. In the turbulent regime there is a saturation of the broadband noise for a large number of
junctions. This corresponds to a breaking of the law of large numbers already seen in globally coupled
maps. Coexisting with this, we find an emergence of novel pseudosteps in the I-V characteristics.

PACS numbers: 74.50.4r, 05.45.4+b, 74.40.+k, 85.25.Cp

The dynamics of rf-driven Josephson junction arrays
has been of great interest in recent years, both experi-
mentally [1] and theoretically [2]. Much of the interest
has concentrated in the study of giant Shapiro steps in
two-dimensional arrays [1,2]. Also one-dimensional se-
ries arrays, but with a dc current drive, have been exten-
sively studied when the junctions are globally coupled
through an external shunting load [3,4]. Some investiga-
tions of chaos and turbulence on two-dimensional Joseph-
son junction arrays, but where there is a locally coupled
dynamics, have also been done recently [5]. Apart from
being a realization of nonlinear dynamical systems with
many degrees of freedom, Josephson junction arrays are
devices that have potential applications as high frequency
coherent power sources [6,7], parametric amplifiers, and
voltage standards [6].

Here we study one-dimensional Josephson junction se-
ries arrays (JJSA) when they are driven by an rf bias
current. It has been shown that underdamped, rf-driven,
single Josephson junctions show chaotic behavior [8,9].
When these junctions are globally coupled in a JJSA,
two conflicting trends will be present: destruction of co-
herence due to the chaotic divergences of the individual
junctions, and synchronization through the global av-
eraging of the common shunting load. This interplay
between temporal chaos and space synchronization has
been studied recently in globally coupled logistic maps
(GCM) [10-13]. These systems exhibit coherent, ordered,
partially ordered, and turbulent phases [10]. In particu-
lar, a surprising result was found by Kaneko [11]: in the
turbulent phase, where spatial coherence is completely
destroyed, a subtle collective behavior emerges. This
was seen as a violation of the law of large numbers as
a function of the number of logistic maps. In this pa-
per, we show that the same kinds of phenomena exist
in rf-driven underdamped JJSA. Moreover, we find that
whenever the JJSA shows a breaking of the law of large
numbers, novel pseudo-Shapiro steps emerge in the I-V
characteristics of the JJSA. This last effect is a new re-
sult which does not result directly from the previously
known phenomena in GCM.

We consider an underdamped JJSA shunted by a re-
sistive load, and subjected to an rf bias current Ig(t) =
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Tgc+ It sin(wyst) [14]. The dynamical behavior of Joseph-
son junctions is commonly described with the resistively
shunted junction model [15]. With this model, the gov-
erning equations of the JJSA [3] are

bk + gk +sindg + i = tgc + s SIN(QT) (1)
N

) o ;

i =ov(r) = i j;gqﬁj , (2)

where ¢ is the superconducting phase difference across
the junction k, and k = 1,..., N. We use reduced units,
with currents normalized by the critical current, i = I/I;
time normalized by the plasma frequency wyt = 7, with
wp = /2el./RC and C the capacitance of the junctions;
and voltages by rI., with r the shunt resistance of the
junctions. Here, iy, is the current flowing through the re-
sistive load; g = (ﬁm)l/z = l/ﬂcl/z, with 8. the Mc-
Cumber parameter [15]; v = Viota1/N is the total voltage
across the array per junction; o = %, with R the resis-
tance of the shunting load, represents the strength of the
global coupling in the array; and the normalized rf fre-
quency is Q. = wys /w,,. Equation (1) represents current
conservation, and Eq. (2) comes from requiring the total
voltage across the array equal to the voltage across the
load.

The simplest attractor of the system is the coherent
state for which ¢x(7) = ¢;(7) = ¢o(7). In this case the
equations reduce to

bo + Gdo + sin o = ide + trs Sin(QueT) | (3)

with § = g(1 + o). This corresponds to the dynamics of
one single Josephson junction. It is known that it can
have chaotic behavior in the underdamped regime, i.e.,
for § < 2, and below the plasma frequency, Qs < 1 [9]. In
this paper we choose § = 0.2, Qs = 0.8, and i,y = 0.61,
and we analyze the behavior of the JJSA as a function of
idc, the coupling o, and the number of junctions, N. We
work with fixed g, instead of g, in order to have the same
coherent attractor in all the cases . We integrate the
dynamical equations using a fourth order Runge-Kutta
method with fixed step AT = T/160, with T' = 27 /Q,¢
the period of the rf drive, and we iterate the dynamics
for times as long as 10247, after discarding the first 256
periods. For some particular cases, we have checked our
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results with A7 = T/320 and integration time 2048T.
For each run we used different sets of random initial con-
ditions {¢«(0), ¢x(0)}.

One of the responses that can be measured experimen-
tally is the I-V characteristics of the JJSA, which is the
time average voltage per junction (v(7)) = ¥ as a func-
tion of igc. When the junctions are rf biased, they show
Shapiro steps [8,9,16]. These are regions for which the

average voltage is constant and ¥ = X gQ,¢. They corre-
spond to phase locked states, which are periodic solutions
in resonance with the rf current, either harmonic (m = 1)
or subharmonic (m > 1). In other parts of the I-V it is
possible to have chaotic solutions, in which the junction
switches pseudorandomly between unstable, overlapping
Shapiro steps [8,9]. We study the chaotic nature of the
solutions by computing the maximum Liapunov expo-
nent X\ of the JJSA. Experimentally, most chaotic modes
can be observed as broadband noise in the power spec-
trum of the voltage [8,9]. The power spectrum is com-
puted as S(w) = 7| foT"‘ v(1)e™7dr|2. In the presence
of broadband noise, the low frequency part of the spec-
trum approaches a constant, Sp = lim,, 0 S(w).

We first analyze the dynamics of one single Joseph-
son junction with the parameters specified above. In
Figs. 1(a) and 1(b) we show the I-V characteristics and
Liapunov exponent, respectively. We have also computed
So (not shown), which essentially correlates with the be-
havior of A in this case. We distinguish four different
regimes as a function of iq.. (i) There are periodic solu-
tions, with A < 0 and Sy — 0. They appear either below
the critical current (iqc < i, = 0.036), where there is no
average dissipation ¥ = 0, or at the Shapiro steps, which
in this case are at voltages %gﬂrf (0.256 < iqc < 0.428)
and 39Qy¢ (0.476 < ig. < 0.508). (ii) There are chaotic
solutions in the region between ¢, and the step at %gﬂ,f
(0.036 < igc < 0.256), for which A > 0, Sy finite. In this
region some periodic “windows” are also seen (notably
for voltages g€ and %gﬂrf). (iii) For high currents
(iac > 0.508), where there is a linear resistive behavior
in the I-V, we find quasiperiodic solutions (also subhar-
monics with high m are possible here), for which A = 0,
So — 0. (iv) Finally, between the two steps, there is a re-
gion (0.428 < i4; < 0.476) where either periodic solutions
with o = %gQrf, quasiperiodic solutions, or chaotic solu-
tions can exist, depending on the initial conditions. In
this region the I-V shows hysteresis. Note that we have
deliberately chosen a case with few stable Shapiro steps.
For this set of parameters, most of the Shapiro steps are
unstable and overlapping, giving place to a wide region
of chaotic states.

Now we study the spatiotemporal behavior of JJSA.
Also in Figs. 1(a) and 1(b) we show the I-V curve and
maximum Liapunov exponent for an array with 128 junc-
tions and coupling o = 0.2. With regard to the temporal
behavior, we see two main differences with respect to the
single junction. The chaotic region (ii) above i, = 0.03
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FIG. 1. (a) I-V characteristics for one single Josephson
junction with g = 0.2, Q¢ = 0.8, i,y = 0.61 (dotted line);
and for a series array with the same parameters and N = 128
junctions with coupling o = 0.2 (full line). We have normal-
ized the average voltage as V = ©/g€Q:s. The inset is a blowup
of the I-V curve in the region of low currents, showing the
emergence of a pseudostep with increasing N (N = 1, dotted
line; N = 16, dashed line; N = 128, full line). (b) Maximum
Liapunov exponent A as a function of i4c. (¢) Number of clus-
ters nc as a function of i4c for the series array with N = 128.

is narrower (0.03 < i4c < 0.2), leaving place to periodic
solutions corresponding to the Shapiro step at 7 = %gQrf
(0.2 < igc < 0.364). On the other hand, the region
(iv) with hysteresis is wider (0.364 < iqc < 0.514), and
shows more chaotic solutions than in the single junction
case. This region has grown at the expense of part of the
? = g Shapiro step and the o = 3gQ¢ Shapiro step.
We find that this tendency is increased as a function of
increasing o, with the chaotic region (ii) narrowing and
the region (iv) expanding in their respective ranges in
ldc-

To further characterize these regimes in the JJSA, we
analyze their spatial behavior. One important concept
in globally coupled maps is “clustering” [10]. A clus-
ter is defined as ¢;(t) = ¢;(t) for i,j in the same clus-
ter. An attractor can be characterized by the number
of clusters it has, mc, and the number of elements of
each cluster (M1, M>,..., M, ). For example, the co-
herent state is a one-cluster attractor (nq =1, M; = N).
In Fig. 1(c) we show ng as a function of i4c, also for
N =128, 0 = 0.2. We find different phases, according to
their spatial behavior, which are as follows. (a) First,
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we find that the coherent attractor only exists either
for currents below the critical current (ige < ic = 0.3,
temporally periodic) or for high currents in the resis-
tive regime (igc > 0.514), corresponding to the tempo-
rally quasiperiodic region (iii). (b) In the Shapiro step
at 9 = 1gQy (0.2 < igc < 0.364) there are few clus-
ters, ng < N, a behavior that corresponds to the “or-
dered” phase of GCM [10]. Here, for most of the cur-
rents is ng = 2, and in the places where ng > 2 (but
neg < N) almost all the junctions oscillate in two big
clusters (M1 = N/2,Ms =~ N/2,M3 =1,..., M, = 1).
(c) The temporally chaotic region (ii), 0.03 < i4. < 0.2,
has all the phases different, n, ~ N, a behavior that cor-
responds to the termed “turbulent” phase of GCM [10].
There is also an “ordered” window with o = %gﬂrf in
the middle of the turbulent phase (0.156 < igc < 0.170),
for which ne = 3. In fact, for the different cases we have
studied, the ordered phase of JJISA seems to coincide with
the Shapiro steps, with the number of big clusters being
equal to the order m of the step. (d) The current range
above the step of %gﬂrf that corresponds to the region
(iv), 0.364 < igc < 0.514 , even when it can have some
temporally chaotic solutions, is clearly different from the
turbulent phase in its spatial behavior. It can have (de-
pending on the initial conditions) either attractors with
few clusters, nq < N, or attractors with many clusters,
nea ~ N, but with almost all the junctions concentrated
in one or two of these clusters. This regime corresponds
to the “partially ordered” or “glassy” phase of GCM [10].
We also find that while A and Sy change smoothly as a
function of i4. in the turbulent phase, they change wildly
in the partially ordered phase.

How does the behavior of the JJSA depend on a func-
tion of N? We find that the turbulent phase is the one
that shows the most notable changes with increasing N.
In fact, we find a nonstatistical behavior for large N, like
the one found by Kaneko in GCM [11] as a breaking of
the law of large numbers. First of all, let us note that
the voltage per junction v™(t) = % Zle go; acts as a
“mean field” in Egs. (1) and (2). Since in the turbulent
phase the ¢;(t), and therefore the ¢;(t), take random
values almost independently, one might expect that v(t)

will behave as an average noise. The power spectrum of
v(t) will be

S@) = Fls@P + 35 | S w@wi@ | @
1#]

with v;(w) the Fourier transform of v;(t) = go;(t). If
the qz'Sj (t) are completly independent, the second term in
(4) will vanish for low frequencies, w — 0. Therefore
SV ~ LS, with S§N) the low frequency part of the
power spectrum of a JJSA with N junctions. This is the
equivalent of the law of large numbers for a periodically
driven system. Then we might expect that in the large
N limit the the broadband noise part of v(™)(¢) will tend

to vanish (S — 0, for N — 00), reducing the dynamics
of the JJSA to N independent chaotic junctions with an
additional time periodic driving v(N =) (t).

In Fig. 2 we show the calculated values of Sy as a func-
tion of N for different values of o and for igqc = 0.124
(similar behavior is also seen for other values of 14 within
the turbulent phase). We see that for some values of o,
Sp follows a 1/N behavior. But for some other values of
o, Sp saturates for large N, indicating that some “order”
has emerged in the turbulent phase. This corresponds
to the breaking of the law of large numbers found in
GCM [11,12]. This also affects the full power spectrum
S(w), where broad peaks develop for large N in the GCM
[11,12]. We have seen the same behavior in the JJSA for
the power spectrum of v(t) [17].

We find that this subtle coherence of the turbulent
phase notably affects the I-V characteristics of the JSSA
in an unexpected way. We find that novel “pseudosteps”
emerge in the I-V curve for large N at the same time that
So saturates in the turbulent phase. This is detailed in
the inset of Fig. 1(a). There we see that, while for N =1
the I-V curve in this region has a “noisy” aspect, when
increasing N some pseudosteps tend to appear. Many
pseudosteps are present all along the range of ig. corre-
sponding to the turbulent phase, as we show in Fig. 3(a)
for 0 = 0.4, N = 128. Note that N = 128 is a value
before the full saturation of Sy, since it is hard to simu-
late very large N for the full I-V. However, we see that
the pseudosteps emerge and sharpen up with increasing
N, always in coexistence with a saturation of Sy. On the
other hand, in Fig. 3(b), we show the case for ¢ = 0.1,
for which we do not see a breaking of the law of large
numbers. There is no evidence of any pseudosteps in the
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FIG. 2. Low frequency limit of the power spectrum,
So = limy—0 S{w), as a function of the size of the array N,
for g = 0.2, Q¢ = 0.8, ir¢ = 0.61, iqc = 0.124 and different
valuesof 0. (A, 0 =0.1;0,0 =0.15; x, 0 = 0.2; O, 0 = 0.3;
x,0=0.4; 0 =05
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FIG. 3. I-V characteristics for an array with N = 128
junctions and with § = 0.2, Qs = 0.8, i;s = 0.61. (a) 0 = 0.4;
note the development of pseudosteps; (b) o = 0.1. The limits
of the turbulent phase (A > 0, nq =~ N) are detailed.

I-V either.

The pseudosteps are not true Shapiro steps, since they
do not correspond to mode locked periodic states. In-
stead, they have a positive Liapunov exponent and fi-
nite broadband noise emission. This emergence of pseu-
dosteps within the turbulent regime of the JJSA is a new
result which one could not have predicted from our pre-

vious knowledge of GCM. They seem to arise as an addi-
tional effect originated by the fact that we have a system
of coupled nonlinear differential equations with a time
periodic drive, instead of simply coupled logistic maps.

In conclusion, we find that many phenomena studied
in GCM [10-13] can be measured in the laboratory in rf-
driven JJSA through their I-V characteristics and power
spectra. Charge density waves can be another candidate
real system, where there are also many coupled degrees of
freedom [18]. Also there, mode locking phenomena and
Shapiro steps have been studied in large N systems [18],
but so far few studies of chaos have been conducted in
this case. Apart from finding an experimental realization
of the breaking of the law of large numbers in the turbu-
lent regime of the JJSA, we found that a new collective
phenomenon coexists with it. This is the appearance of
pseudosteps in the I-V characteristics. They can be ex-
perimentally distinguished from the true Shapiro steps
since they only exist for large N and have a finite broad-
band noise Sp. Instead, the true Shapiro steps exist for
any N and have Sy = 0.

We acknowledge C. Pando-Lambruschini and J. V.
José for useful comments and a critical reading of the
manuscript.
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