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The evolution of charging energies of few-electron artificial atoms (quantum dots) with magnetic field
is calculated and compared with results of the single-electron capacitance spectroscopy of Ashoori et al.
The evidence for magnetic field induced spin and angular momentum transitions in the strongly interact-
ing artificial atom is presented.
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Artificially made atoms are quantum dots created in
semiconductor heterostructures by laterally confining a
two-dimensional electron gas [1]. In a typical vertical (or
capacitor) structure the number of electrons can be well
controlled and a small number N (N=1, 2, 3,4. . . . ) of
electrons per dot has been achieved experimentally [2,3].
The number of electrons is increased by changing the
gate voltage and charging the dot with an additional sin-
gle electron. The charging of a quantum dot with a sin-
gle electron changes the capacitance of the structure.
This method is called a single-electron capacitance spec-
troscopy (SECS) [3]. The charging of an N electron
atom takes place when the chemical potential p~ of the
electrode equals the chemical potential p~(N) of the
atom. The chemical potential pz (N) is equal to the ener-

gy required to add an extra electron pz(N) =E(N+1)
—E(N) and thus SECS indirectly measures ground state
energies E(N). The ground state energy of an artificial
atom is determined by a competition of kinetic, Zeeman,
and electron-electron interaction energies leading to a
series of incompressible states with "magic angular
momentum" values [4]. The interaction of electrons in a
strong magnetic field has been studied in the context of
the incompressible liquid of the fractional quantum Hall
eAect [4-6] and is predicted to aAect strongly transport
[7], thermodynamic [8], and optical properties [9,10] of
artificial atoms. In this work we demonstrate the impor-
tance of these effects on charging energies of few-electron
artificial atoms in a magnetic field. Our calculations are
compared with recent SECS results of Ashoori et al. [3]
and the evidence for magnetic field induced spin and an-
gular momentum transitions in the strongly interacting
artificial atom is presented.

We start by emphasizing several important differences
between real and artificial atoms. Some of these dif-
ferences are associated with the semiconductor host ma-
terial: the variable electron effective mass m and the
screening of repulsive electron-electron interactions via
the effective dielectric constant ep. As a consequence,
artificial atoms in extremely high magnetic fields can be
studied in laboratories. The most significant difference,
however, is that in real atoms electrons move in a
confining potential of the nucleus which is singular, while
the confining potential of artificial atoms is nonsingular.

While both potentials have identical geometrical sym-
metries associated with angular momenta, they differ in

hidden dynamical symmetries and associated constants of
motion. The Runge-Lenz vector is a well known addi-
tional constant of motion in the Coulomb problem. Since
the nonsingular potential can always be approximated by
a parabolic (harmonic) confining potential, the degrees of
freedom in the artificial atom associated with center of
mass motion separate from the relative motion of elec-
trons [8,10]. Only the relative motion is affected by
electron-electron interactions. This property makes arti-
ficial atoms similar to extended systems.

We outline here calculations of the electronic structure
of artificial atoms based on Schwinger's coupled boson
representation [10,11] which explicitly incorporates these
two fundamental features: hidden symmetries and separ-
ability of the center of mass and relative motion. Explicit
results for charging energies of few-electron atoms
(N =0, 1,2, 3) are compared with experiment.

We consider a two-dimensional artificial atom (dot)
containing N electrons confined by an externally imposed
parabolic potential with a characteristic energy coo and
moving in the field of a fictitious nucleus (gate) with a
positive charge +Ne at a distance d away from the plane
of the dot. The atom is placed in a magnetic field B nor-
mal to the plane of the dot. The positive charge assures
charge neutrality of the atom and plays the role of the
gate. For a dot size much smaller than d, we can approx-
imate the nonsingular potential V(r) of the positive
charge by —e N/cod+ 2 (e N/~d )r . Therefore the
positive charge contributes a constant term and a para-
bolic term. The larger the number of carriers N, the
stronger the single particle confinement. The Hamiltoni-
an for N electrons can be written as

r
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The vector potential is given in the symmetrical gauge, g
is the effective g factor, p~ is the Bohr magneton, 5,' is

the z component of the ith particle spin, and ct =e /cpd.
The effective confining frequency m& depends on the
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number of particles and is given by co~ = [(coo)
+e N/mcod ] 'i, and we take 6 = 1.

In order to introduce a coupled boson representation
for the single particle Hamiltonian of the dot we intro-
duce a pair of harmonic oscillator lowering (raising)
operators (a,b) for each particle [10] z* =Qlo/20(at
+b), z =Jl 0/20(a+b t), tI, =QQ/2lo (b —at), 8,*
=JQ/2lo (a —bt), where z = (x —iy )/2, lo=l/(mro, ) 'i

is the magnetic length, co, is the cyclotron energy, and
0 = [1+(2'~/ro, ) ] 'i . The single particle Hamiltonian
for an electron in the dot reduces to the Hamiltonian of a
two-dimensional anisotropic harmonic oscillator with
eigenenergies E„, =O~(n+ —,

' )+ 0 (m+ —,
' ), eigen-

states !m,n) given by !m,n) =(bt) (at)"!0)/(n!m!)'i
and two different frequencies t1 +. = [Jco, +4coJv ~ co,}/2.
The dynamical symmetries of the problem are now re-
vealed by introducing the Schwinger angular momentum
representation (11) J, j, J =(atbt)a'/2(g), j=(atb )
x I/2(g), where rr are Pauli matrices. The components of
the operator J satisfy the usual commutation relations:
[J;,J~] = —

ic~~k Jl„and J =j (j+ 1). All conserved quan-
tities are determined by the algebra of commuting opera-
tors. The eigenvalues of j and J, are 0, 2, 1, 2, . . . . The
Hamiltonian can now be simply expressed in terms of
operators j and J, as H = A (j+ —,

' ) —co,J, . Note that
the breaking of continuous symmetry associated with the
total 3D angular momentum in the original Hamiltonian

due to the restriction of the motion of electrons to 2D re-

sults in a rather peculiar dependence of the Hamiltonian
on j but not on J .

We now turn to the construction of many electron
states which automatically separates the center of mass
(c.m. ) motion and the relative motion of electrons. This
is accomplished through a unitary transformation U(p)
transforming individual particle boson creation operators
(a;t) into c.m. and relative creation operators (A;t) [12]:

&c.m.

eiP

i2$

i3$

1 1 1
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(2)

where &=2n/N. Operators [a;} transform according to
U( —p), and operators [b;,b;t} transform into operators
[B;,B;t} identically to operators [a;a;t}. It is easy to see
that the transformation U preserves boson commutation
relations among operators (A, B) and that center of mass
motion separates from the Hamiltonian. The motion of
remaining N —

1 relative particles is governed by the rela-
tive Hamiltonian (we drop the constant term aN)

N N

H„~= P 0+(N;+ 2 )+0—(M;+ 2 )+P P v(q)e !~! [exp[ig*(a( —a~t)]}[exp[ig(a; —a~)]j
i 2 q i&j

x [exp[ig(b;t —bJt)] j [exp[ig*(b; —
bJ )]j, (3)
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where g =(q +qz)l&/420 and v(q) =2ne /coq. The
relative Hamiltonian depends only on relative coordinates
via a; —aJ =gP-z(Uj —U~t)A~. The states of the rela-
tive Hamiltonian are built from simple products of single
particle states +;-z!N;M~) and spin states by the use of
the antisymmetric operator As=+;-~Det(P;)P;. Here
P; are elements of the (N —1)-dimensional representation
of the permutation group S~. This procedure, when ap-
plied to individual electron states, gives simple Slater
determinants. The construction of the N —

1 representa-
tions of the S& is accomplished by a similarity transfor-

!
mation UPUt applied to the standard N-dimensional rep-

resentation of S~, and dropping the first row and first
column (P is the regular N-dimensional representation).

Note that the transformation U also transforms the N
electron spin wave function g(s, ) for S, =(N —1)/2 (a
single reversed spin) into spin states g(s, s, ) character-
ized not only by the total spin projection S, but also total
spin S. There is a clear analogy between projecting out
the c.m. degrees of freedom and looking at spin reversed
excitation s.

This general procedure is best illustrated for the first
nontrivial case of three electrons [9] (N=3). There are
two pairs of relative operators [Az, A3}, [Bz,B3} and six
elements of the permutation group [P;}:

r

0 e
' e"' 0

The three-electron states are classified by a total spin S and its projection S,. There is one quartet

[g(s,s, ) =g(-,', + —', ),~(-', , + —,
' ),~(-', , ——,

' ),g(-', ,
——,

' )}
and a pair of doublets

[~(s,s.) =[&,(-,', + —,
' ),&,(-,', + —,

' )};[&,(-,', ——,
' ),&,(-,', ——,

' )jj.
The antisymmetric states are generated from a product of spin [g(S,S, )j and harmonic oscillator states
!Nz, N3, M2, M3) using the antisymmetrization operator As. This is readily accomplished because operations P; merely
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correspond to simply adding a phase and/or interchanging relative operators. For example, for the spin polarized system
(S = —', ,S, = ——,

' ) the correlated basis ~N2, N3, Mz, M3)" (Laughlin states) of a quantum dot turns out to be a simple
combination of harmonic oscillator states:

1+2cos [2'(N z
—N 3+M 2

—M3)/31
IN2, N3, M, ,M,)"=

342
These states exist only if the quantum number L =M2

M3+N2 N 3m, with m = 1,2, 3. . . . Hence statis-
ties introduces additional symmetries which result in re-

stricted coupled boson states. Similar results can be de-
rived for spin doublets (S= —,

' ) for which quantum num-

ber L is restricted to L = 3m + 1, but with m
=. . . —2, —1,0, +1,+2. . . . Examining the form of the
relative Hamiltonian we find another conserved quantity:
the total relative angular momentum R = (M2
+M 3 ) (N2 +N 3 ). The energy spectrum of the relati L'e

Hamiltonian is now diagonalized for each value of the
relative angular momentum R using correlated states
drawn from up to four Landau levels as a basis [13). We
take the bare confining potential to be coo=3.31 meV, the
distance d of the nucleus to the plane of the dot d =1000
A, a =1.2 meV, and other parameters, e.g. , effective mass

and dielectric constant, appropriate for GaAs. The Zee-
man splitting is taken to be hE, =gpB, which for GaAs
(g factor of 0.52) gives AE, =0.03 meV/T. All energy
spectra are plotted with respect to the vacuum energy
E„=N(0++0 —)/2 which includes the zero point
motion of the center of mass. The calculated ground
state energies for N =2 and N =3 are shown in Figs. 1(a)
and 1(b), and are labeled by a total spin S and relative

angular momentum R. The cusps in the ground state en-

ergy as a function of the magnetic field are due to the
change in the spin polarization and changes of the ground
state angular momentum of the relative motion both for
the two- and three-electron atoms. The change of the an-

gular momentum with the magnetic field can be easily
understood in terms of the competition between kinetic

energy, Zeeman energy, and repulsive electron-electron
interaction energy. The contribution from kinetic energy
decreases as it is proportional to 0 while the contribu-
tion from e-e interaction (proportional to 8 'l ) and Zee-
man energy (proportional to 8) increases. At low 8 elec-

trons minimize their kinetic energy by occupying a small

area of the dot, while as the magnetic field increases elec-
trons maintain a larger area minimizing mutual repul-

sion. The area is quantized due to restrictions on

possible quantum numbers R and L leading to incom-

pressible spin-polarized states with restricted values of
relative angular momentum R =3,6,9, 12, . . . .

In Fig. 1(c) we show the magnetic field dependence
of the charging energy [without the kinetic energy E(1)]
p~(2) —E(1)=E(3)—E(2) —E(1) of a two-electron
dot. The charging energy exhibits a number of struc-
tures: the peak around 8=2 T (A) corresponds to a spin

singlet-spin triplet transition in a two-electron atom, fol-
lowed by a spin-unpolarized (S= —,

' doublet) to spin-

polarized (S=
2 quartet) transition in the three-electron

(~N2, N3, Mz, M3) ~N3 Np M3 M2)) .

atom. The peak around 8=5 T (8) corresponds to tran-
sitions back to spin-unpolarized-spin-polarized states and
change in the angular momentum of the three-electron
atom from R=3 to R=6. The structure (dip) around
8 =6 T (C) corresponds to the spin and angular momen-
tum change in the two-electron atom. Small oscillations
at higher magnetic fields correspond to transitions be-
tween diAerent incompressible spin-polarized states of the
three-electron atom, with a dip at around B=13 T corre-
sponding to a change in the angular momentum state of
the spin triplet state of the two-electron atom.

The SECS technique and basic configuration of the
sample has been described recently by Ashoori et al. [3].
The SECS measures charging energies of a vertical
quantum dot based on a 175 A quantum well with lateral
confinement provided by a metallic gate. We concentrate
on a small number of electrons because for up to four
electrons there is no structure in the charging energy of
noni nteracti ng electrons. All changes are driven by
Coulomb interactions. In Fig. 2 we show the experimen-
tal results [3] (solid circles) and calculated (solid line)
dependence of the charging energy of a two-electron
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FIG. l. (a) Ground state energy of a two-electron artificial
atom as a function of the magnetic field, (b) ground state ener-

gy of a three-electron artificial atom as a function of the mag-
netic field, and (c) charging energy of a two-electron atom (no
kinetic energy). Symbols indicate spin and angular momentum

states of the ground state.
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FIG. 2. Measured (solid circles) and calculated (solid line)
charging energy, i.e., energy to add a third electron to the two-
electron atom [[E(3)—E(2)] —E(1)] as a function of the
magnetic field (the vacuum energy subtracted from both
curves). Letters A, B,C,D correspond to spin and angular
momentum transitions in the two- and three-electron atoms.
The size of the circle reAects experimental error of approxi-
mately 0.03 meV.

atom on the magnetic field. We have subtracted the ki-
netic energy contribution from the experimental charging
energy, and shifted vertically the experimental versus cal-
culated curves. The experimental error of approximately
0.03 meV is reAected in the size of experimental points
[14]. There are four main structures in the experimental
and calculated curves. We associate the first minimum
below B=2 T (A) with spin singlet (S=O,R=O) and

spin triplet (S= 1,R =2) transitions in the two-electron
atom. The following peak above B=2 T (B) is associated
with the spin-unpolarized (S= —,',R=2) and spin polar-
ized (S= —', , R=3) transition in the three-electron dot.
The plateau between B=2 T and B=5 T corresponds to
the incompressible state (S= &,R =3) of the three-
electron dot. The third peak (C) is associated primarily
with the angular momentum transition in the three-
electron atom between magic states R =3 and R =6.
This transition is intertwined with the spin-polar-
ized-spin-unpolarized transition [see Fig. 1(b)]. The
fourth structure around B=6 T (D) corresponds to the
suppression of charging energies mostly due to the angu-
lar momentum transition R = 1 R =3 in the two-
electron atom. This transition is intertwined with the
spin-polarized-spin-unpolarized transition [see Fig.
1(a)]. The calculated charging energies refiect reason-
ably well the position, magnitude, and shape of the exper-
imental data. In particular, the energy scale of structures
2, 8, and D is well above experimental error. The visible
discrepancies between experiment and theory could be
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due to the parameters of the experimental system: finite
well width, presence of the gate and nonparabolic correc-
tions to the potential, band nonparabolicity, and the pres-
ence of remote impurities. We have no reason to believe
that these eff'ects will introduce a crossing of lowest single
particle energy levels and hence give rise to magnetic field
induced structures in charging energies of few-electron
dots. The very presence of oscillations in experimentally
observed charging energies is clearly due to electron-
electron interactions. To account for the magnitude of
oscillations both improved calculations and better experi-
ments are needed.

We studied the efTect of spin, confinement, and
electron-electron interactions on the dependence of charg-
ing energies of few-electron artificial atoms (quantum
dots) with the magnetic field. Calculations including two
important features of artificial atoms, dynamical sym-
metries and separability of the center of mass motion,
were compared with results of the single-electron capaci-
tance spectroscopy of Ashoori et al. The evidence for
magnetic field induced spin and angular momentum tran-
sitions in the strongly interacting artificia atom is

presented.
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