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Spectral Statistics in Nondi8'usive Regimes
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We present an efficient approach for calculating spectral correlations of finite disordered systems
beyond the diffusion approximation. For both ballistic (but not perfectly clean) and diffusive systems we
find new regimes of spectral correlations. We address the nonuniversal features of these correlations and
interpret them in terms of semiclassical concepts.
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A major theme in the study of mesoscopic systems has
been the manifestation of quantum interference phenom-
ena on submicron scales in the form of novel thermo-
dynamic effects. Significant progress has been made once
connections with level statistics and spectral correlations
in such systems have been pointed out [1-9]. Subse-
quently, the close links between the theory of quantum
chaos and certain aspects of mesoscopic physics have
been elucidated [10-12].

Some important observable quantities may be related
to the level statistics of isolated mesoscopic systems with
random potentials. Examples include the ac conductivity
a(to), expressed in terms of level correlations over an en-

ergy scale co [111, the typical (single sample) persistent
current, which is closely connected with level correlations
over the Thouless energy E, [12] and the canonically
averaged magnetization of quantum dots subject to an
external magnetic field, which is related to the Auctua-
tions of the level number over a field dependent energy
scale [5,7, 10]. Furthermore, one may hope that some in-

formation concerning the level structure of small finite
conductors would become available by means of direct
measurements (e.g. , ac absorption or tunneling experi-
ments).

A particularly useful quantity characterizing level

spectra is the two-level correlation function

Y2(Ei H)', E2, H2) =
2

[(v(E i, Hi) v(E2, H2))
1

V

—(v(E i, H~ ))(v(E2,H2))], (I)

where v(E, H) is the sample specific density of states at
energy E and applied field H, the angular brackets denote
averaging over the random potential and v=(v(Ef)). A
variety of thermodynamic quantities can be derived from
this correlation function, including the root-mean-square
sample-to-sample Auctuations in the number of single
particle levels within an energy interval AE (near the Fer-
mi energy) at an applied field H, X2(AE, H).

Besides its importance for practical applications in con-
densed matter physics, the function Y2 also plays a major
role as an interface between the theory of disordered sys-
tems on the one hand and the semiclassical theory of
quantum chaos on the other hand. According to Ref.

[10], the energy Fourier transform of Y2 in co= E~ —E—z
satisfies, Y2(t) ~ tP(t), where P(t) denotes the classical
probability for periodic motion. In this interpretation, Y2
contains information about the scattering of electrons
moving along periodic orbits of length vf/to, vf being the
Fermi velocity.

The functions Y2 and Z2 have so far been calculated
only for a limited range of parameters. Denoting the
system's linear size by L, the elastic mean free path by I,
the Fermi energy (momentum) by Ef (pf), the diffusion
constant by D, and the system's dimensionality by d, one
defines several important energy scales: the average in-
terlevel spacing B,,E, =D/L, the inverse elastic mean
free time I/z =vf/l, and Ef. A diffusive system is defined
by h«E, « I/r [or equivalently I «L/I «(pfL) ].
For this range of parameters the behavior of Z2(AE, O) is
known for the ergodic regime, h, «h, E«E„where ran-
dom matrix theory applies [11, and for the diffusive [3]
regime, E, «AE«1/r. The elTect of weak and inter-
mediate fields on Z2 has also been studied [3,5,7,9].
However, a comprehensive description of thermodynam-
ics on mesoscopic scales requires an extension of this pic-
ture to include large energy intervals, wider ranges of dis-
order, and stronger magnetic fields.

Here we report on a new approach to the calculation of
the two level correlation function (and, more generally,
of other thermodynamic quantities and Auctuations
thereof). Although our approach is perturbative, it goes
beyond the scope of the standard diffusion approximation
which employs an effective diffusion equation to describe
fluctuations in both the particle-hole and the Cooper
channel. Presenting first an outline of this approach,
we apply it then to the study of the zero field X2.
Specifically, (I) we apply our method to the large energy
(AE)) I/r) regime, finding a new type of behavior which
differs substantially from both the random matrix and the
diffusive regimes, and (2) for the first time we calculate
Z2 for systems which are ballistic (L & I or equivalently
1/r & vF/L) but already nonperturbative in the sense that
the disorder is strong enough to mix neighboring levels
and cannot be treated by means of elementary perturba-
tion theory [l & L(pfL) ' or d, & 1/r] The relevan. ce
of the latter condition has first been discussed by Sivan
and Imry in Ref. [13]. Again we find new regimes of lev-
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el correlations.
We now sketch our calculation of the two-level correlation function and the level number fiuctuations

I E+hE/2
Zp(AE;H|, H2) =

2
dEidE2Y2(E|, H|,'E2, Hp), E =6(Ef),

g2 ~ E —aE/2
(2)

for a system of noninteracting electrons moving in a disorder potential V [14]. To begin with, we model the disorder by
a white noise potential (V(x) V(y)) =(2nvz) '6(x —y). The generalization to potentials with finite correlation length
will be discussed below. Expressed in terms of advanced and retarded single electron Green functions 9 —(E,H)
=(E ——'P) ', where P is the full Hamiltonian of the system and E —=E ~i y, Y2 reads

Y2(E Ht ti', E2, H2) =
2 2 2d

3'(trQ+(EttH|) trQ (E2,Hp)), ,
1

2~2v2L 2d (3)

where the subscript c indicates the omission of all disconnected contributions to the average. In order to evaluate Eq.
(3) by means of diagrammatic perturbation theory we represent 0 as 0 —(E,H) =t)~ ln(E ——//), and take the inelas-
tic broadening y= h, thereby avoiding divergences at m 0. Expanding 5' in terms of V and averaging over disorder we
obtain to leading order in pfl,

Y (E, , H, ;E2,H2) = „t), , p g —[S„(E—E,H —)+S„(E—E,H )]+S,(E, —E )
1 2, 1

2' v L n=2n
(4)

where H+- =H& H2. A diagrammatic representation of the S„ is shown in Fig. 1. Introducing the quantities

(r, r') =
d

G+(Ei,Hi,'r, r')G (E2,H2, r', r),
2zvzL"

(5)
~(c)(„„i)

d
G+(Ei,Hi, r, r')G (E2,H2, r, r'),

2zvzL"

where G denotes the disorder averaged Green functions, and regarding them as coordinate representation of linear
operators (,we may write S„' =tr[g ' ]". Consequently

Y2(ro, Hi, H2) =
2 2 2&

|I (tr[ln[1 —((ro,H —)']+in[1 —((ro,Hi)']j —Si(ro)),2 2L2d (6)

where ln(1 —x) =—ln(1 —x)+x and the notation indicates
!

that the weak dependence of Y2 on the center coordinate
(El +E2)/2 is inessential for our purposes. According to
Eq. (6) the analysis of the spectral correlation function
amounts to analyzing the eigenvalues of the integral
operator g. This is the main advantage of representing
Y2 in terms of energy derivatives of S„. Expanding the
Green functions entering Eq. (3) directly rather than
their logarithm, leads to diagrams containing vertex parts
in addition to impurity ladders (cf. Ref. [3]) which are
more dificult to evaluate in the nondiAusive regimes.
Moreover, the energy integrals in Eq. (2) over energy
ranges larger than 1/z then become virtually intractable.

The eigenvalues of g depend on the sample's dimen-

sionality and shape. We consider a quadratic two dimen-
sional system, with Dirichlet boundary conditions on the
Green functions (no current fiow across the boundaries).
Although our approach may account for magnetic fields

[14], we shall consider here the field free case Hi =H2
=0. Because of the boundary conditions imposed on our
model system, the diagonalization of the operators g turns
out to be intricate and will be discussed elsewhere [14].
As a result we find the eigenvalues (cf. also Ref. [15])
Xq(ro) =[(1+iroz) +(ql) ] 'i where q=nL '(ml,
mq), m|2=0, 1,2, . . . and q =!q!. In the field free case

no distinction between ( and ( is necessary. We get

X2(AE) =

from which Y2 may be obtained according to Yz(ro)

G (et) G (et)

(a) (b)

FIG. l. Diagrammatic representation of S„( i (a) and S,(ci

(b). The inner and outer rings are connected by, respectively, n

impurity lines. The massive arrows represent impurity averaged
Green functions. For S] and S2 the direction of the arrows is
meaningless and one should avoid double counting.
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Z, (~E) = 1 hE +y
ln

y'

in agreement with results for the Gaussian orthogonal en-
semble of random matrix theory [3].

D2: E, «co«1/ r. Order of (L/1) modes contribute.
Approximating the sum over q by an integral, one obtains
[3]

2

Y2(to) = 2(~r)' L
In(ror ),

2+i

2

Z2(AE) = L hEr .
2+i

D3: 1/r « to. Corresponds to classical trajectories
shorter than the typical mean free path. The diagram S2
involving only twofold impurity scattering plays the dom-
inant role [16]. We obtain [17]

=(& /2)|)~p&2(&E) ~~p-„. In the following we evaluate
these expressions for diAusive and ballistic systems sepa-
rately.

Diffusive systems. —Three energy regimes with quali-
tatively diAerent spectral statistics can be identified:

Dl: 0~ co((E,. This regime corresponds to times
larger than the diAusion time across the system E,
The q =0 mode [cf. Eq. (7)l dominates, yielding

Q2 y2 ~2
Y2(to) =

&2 ( 2+ 2)2

This logarithmic increase diflers from the saturation in

Z2(AE) which was hypothesized in Ref. [3] (cf., however,
the discussion below). The above results are summarized
in Fig. 2.

Ballistic systems. —There is no diA'usive motion on

length scales smaller than the system size, hence E, is ob-
solete. Instead, the inverse time of liight EIf =vf/L be-
comes important. Before we proceed with calculating X2,
we note that the disorder-averaged density of states
(v(E)) of a ballistic sample is not constant (like in the
diffusive case) but exhibits nonuniversal modulations as a
function of E. The interplay between these fluctuations
and the disorder induced sample to sample Iiuctuations
discussed below will be analyzed elsewhere.

81:0 ~ ro&&1/z. On the corresponding time scales the
electrons are multiply scattered, i.e., the motion is

diffusive. Since ro«E,f, only the 0 mode in Eq. (7) con-
tributes and we obtain to leading order in ror

Q2 y2 ~2
Y2(to) =

2 (y
2 + ro 2 ) 2

hE +z2(aE) = ln

like in the ergodic regime for diff'usive samples.
82: I/r «ro«E, f. This regime corresponds to trajec-

tories shorter than the scattering length but longer than
the system size. In this regime the motion is indeed
ballistic. Still the q =0 mode dominates and we obtain

Y2(to) =—1 L
2x 2zl

z2(aE) = 1 L
2z 2+i

140

120

100

2
Q2

ln(AEr )+—3
2

(io) Z, (~E) = —,in(yr)—2 1 (AEr)
n 2tr 1+ (AEr )

The most remarkable feature of this result is the non-

monotonicity of Z2 as a function of energy, which implies
that the fluctuations in the number of levels contained
within an energy interval of width I/r & hE & E,f de-
crease upon increasing the width of the energy interval.

83: m & E&f. As soon as m becomes comparable with

E,f,q&0 modes contribute to the sum in Eq. (7). Replac-
ing the summation by an integral we obtain an asymptot-
ic behavior

80

N
60

co &) Etf
Y2(to)

1 L
2x 2+i

2 r ~ 2

(i3)
40

20

0 I ~ I . I, I I, I, I ~ I I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

E&

FIG. 2. Z2(AE) in the diffusive case (pfl =100, L/l =10).

2b,E && Etf
1

Z2(AE) In(AEr ) .
2zl

In Fig. 3 we have plotted the analytically calculated
Eq. (7) (approximating the summation by an integration)
and the numerically evaluated sum. The analytical ap-
proximation turns out to blur fluctuations on a scale
—E,f. Qualitatively, the onset of fluctuations can be un-
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FIGG. 3. Z2(AE) in the ball'e a listic case (pfl =10, I I =0.1).
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