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We study irreversible interpolymeric reaction rates k in polymer solutions as a function of concentra-
tion ¢. At high dilution, kinetics obey mean field theory, and screening of excluded-volume repulsions as
¢ increases results in a growth, k —¢3¥/4 where g is the monomer contact exponent. Screening effects
cause a transition to diffusion-controlled kinetics at a value ¢**, beyond which (for entangled solutions)
k decreases as k~¢ ~/8*7 y being the entanglement exponent. Thus k is peaked at ¢** which, in
agreement with experiment, is distinct from the overlap threshold.

PACS numbers: 82.35.+t, 05.40.+j, 05.70.Ln

The key to understanding linear polymerizations is es-
tablishing the dependence of polymer-polymer reaction
rates on chain length, polymer concentration, and reac-
tivity of the functional groups (see Fig. 1). This has been
one of the principal motivations for the substantial
research effort directed towards the development of fun-
damental theories of high polymer reactions [1-7] and
the precise measurement of reaction rates k using photo-
physical and other methods [8-10]. At present, however,
no fundamental theory for k exists across the concentra-
tion range of relevance, in consequence of which “first
principles” theories of various types of polymerization are
unavailable in spite of the vast body of experimental and
theoretical work on the subject [11,12]. In this Letter we
present a basic theory of irreversible reaction kinetics as a
function of polymer concentration from dilute solution
through the semidilute regime into the melt. Beyond po-
lymerization, our motivation is both the interpretation of
photophysical measurements (which furnish a fundamen-
tal probe of polymer behavior) plus the understanding of
a variety of other ‘“‘reacting” systems such as surfactant
solutions in which molecules aggregate into long flexible
chains [13] (“living polymers”).

In the various types of linear polymerization processes
which exist [11] the basic interpolymeric reaction event,
usually irreversible, is as follows. Should the functional
groups of two reactive chains, each comprising N units of

(a) (b)
(a) A pair of reacting polymers (with reactive end
groups) in a semidilute environment of ‘“mesh spacing” & is
analogous to a reacting pair in the melt, depicted in (b), where
the “monomers” are blobs of size &£ and the “reactive blobs™ are
of effective reaction range & and reactivity Qesr.

FIG. 1.

size h, happen to overlap (i.e., diffuse to within a distance
h of one another where 4 is the reaction range) then reac-
tion occurs with probability Q per unit time [see Fig.
1(a)]. Now for very small values of the functional group
reactivity Q, since equilibrium is presumably only slightly
disturbed one anticipates that mean field theory should be
applicable, i.e., k & P&™, where PS™ is the equilibrium
reactive group-group contact probability [3]. Less clear
is what should happen for ‘““large” or “intermediate” Q
when the possibility of a nonequilibrium polymer state
[14,15] arises.

The classic example of a “large Q” reaction is termina-
tion in free radical polymerization [11]. Studies of
molecular weight evolution and propagation rates in free
radical systems thus constitute an important source of
data on k. The general picture [11] is that after an initial
increase as polymer concentration increases from dilute-
ness [16,17], k drops dramatically at higher concentra-
tions, ultimately leading to the celebrated Tromsdorff or
“gel” effect [11,12] in which polymerization rates exhibit
enormous increases. The reduced k allows chains to grow
longer which enhances the rate at which the concentra-
tion of the environment increases, thus further reducing
k, and so on: The polymerization ‘“‘autoaccelerates” into
an entangled melt. However, the most unambiguous
available experimental data are that of Mita, Horie, and
Takeda who measured phosphorescence quenching rates
(large Q) in end-labeled polystyrene solutions [8, 101, re-
porting a rather novel behavior. In good solvents, after
an initial increase as polymer volume fraction ¢ increased
into the semidilute regime (¢>¢* where [18] ¢*
~ N ~%5 is the polymer overlap threshold), k was ob-
served to peak at a certain value of ¢ and then decay
monotonically for greater values [see Fig. 2(a)]l. For the
longest chains the peak did not appear to coincide with
o*.
The long time reaction rate constant k determines the
evolution of the number density, n, of reactive chains
(each bearing one functional group) via A= —kn?/2,
after making the standard assumption that density corre-
lations on scales much greater than the polymer size can
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be ignored. There is considerable evidence that for spa-
tial dimensions d > 2 this is justified [4,19,20]. The poly-
mer scale fluctuations, however, are crucial and deter-
mine the structure of k as will be shown below. As de-
picted in Fig. 1(a), we will consider reactive chains dilute
in an inert background at volume fraction ¢, this being
precisely the type of situation realized in both free radical
polymerizations and the photophysical experiments men-
tioned above. For simplicity, we consider chains of equal
length. A straightforward generalization of de Gennes’
procedure [4] to the case of finite Q leads to

_ ovPe™
1+0[&dtS()
where V is the system volume and the “‘return probabili-
ty” [4] in the absence of reactions, S(t)=f, <1G(r,0,1),
is defined in terms of the Green’s function G(r,r',t),

namely, the probability density that the reactive groups
of a pair of chains would be separated by r after time ¢
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FIG. 2. (a) Phosphorescence quenching rates taken from
Ref. [8] for polystyrene, end capped with benzil and anthryl
groups, in benzene solvent at 30°C. O: reacting chains, 800 and
640 units; inert chains, 1000 units. <: background, 3800 units;
reacting, 3900 and 2900 units (four smallest ¢ values) and 3300
and 1200 units (three largest ¢ values). Estimates of ¢* are
0.006 (0) and 0.002 (&). All ¢ values were calculated taking
estimate A =5.5 A. (b) Theoretical dimensionless k versus ¢ for
four “weak” systems. Parameters are Qr,=0.1, N.=200,
y=1, with N=4000 (solid line), N =8000 (dash-dotted line),
N =12000 (dotted line), and N =16000 (dashed line).
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given an initial value ', if their reactivity were “switched
off.” The importance of Eq. (1) is that it relates the
nonequilibrium observable k to static and dynamical
quantities characteristic of the equilibrium state; more
rigorous renormalization group studies [5] provide con-
vincing evidence of its validity (at least in terms of its
ability to reproduce exponents correctly). In metals
(P& — h9/V) and for Q — oo, Eq. (1) matches the ex-
pression obtained by de Gennes [4] who established radi-
cally differing reaction kinetics depending on whether
S () described “compact” exploration of space (in which
the volume explored by a reactive species grows less rap-
idly than linearly in time) or “noncompact” exploration
[4]. Our aim is to extend these ideas to situations where
spatial correlations exist between the functional groups,
unlike melts where screening effects dominate [18].

What is the general structure of S(z) when correla-
tions may be present? To answer this we invoke the prin-
ciple of detailed balance which dictates that

Peg(r)G(r,r',t) =Peg(r)G(r',r,t) , )

where Pq(r) is the equilibrium distribution. Second, we
assert that G(r,r',t) is approximately independent of r'
for values of r' much less than the rms chain unit dis-
placement after time ¢, namely, x, = h(¢/t;)/* where 1,
and z are, respectively, the relaxation time of a single
chain unit and the dynamical exponent. This is simply
the principle of finite memory: The initial condition r'
will be forgotten after a time scale much greater than the
diffusion time corresponding to r'; i.e., when the width of
G as a function of r greatly exceeds r' one may simply re-
place »' with zero. Thus, specializing Eq. (2) to small
values of r and ', we have
G(r,0,t) _ G(r',0,2) '

Pe(r) Pe(r) ror<Lx,, 3)
implying that G(r,0,¢)/Peq(r) is independent of r for
r<x,; i.e., the asymptotic behavior must match that of
the equilibrium distribution, Peq(r)~r8, where [18,21,
22] g is the correlation hole exponent quantifying the re-
duced contact probability between chain units due to
excluded-volume repulsions (g vanishes for melts). Final-
ly, let us assume that the only scales in G are r and x,.
Then the dimensions of G force the following structure:

1
G(r,0,t) =~ —
xf!

g
L] r<x,). (4)

Xy

This result is physically reasonable; G(r,0,¢) is essential-
ly equal to the conditional equilibrium probability that
the groups are separated by r, given that they lie within
x; of each other. That is, the dynamics are ergodic in a
region of volume xZ only, so within that portion of r space
relative proabilities are as in equilibrium. From the
definition of S(¢), Eq. (4) then leads to the following
scaling form:

Sit)~t7% o=(d+g)/z, (5)
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where 0 is the characteristic “reaction exponent” [23].
Switching off correlations (g— 0), one recovers the re-
sult of de Gennes [4].

On scales much larger than the rms polymer coil size
R=hN" and longest relaxation time 7=¢,(R/h)? (v be-
ing the Flory exponent [18]), center of gravity diffusion
takes over (z— 2) and statics are ideal (g =0), whence
0=d/2; i.e., S(t) is integrable in three dimensions [4].
Then k depends on the short time behavior of S(¢), t < 7,
which for unentangled melts and dilute solutions (good
solvents are assumed throughout) involves only a single
value of 6. Integrating Eq. (5), Eq. (1) then gives

QVP™ L]l a, 6)

—-—— coll ~
th

1+Q~t},NC°" ’

where N is identified as the mean number of “col-
lisions” between the reactive groups of two overlapping
chains during the overlap period of order 7. Thus
Oty N measures the total reaction probability when
two coils collide due to center of gravity diffusion. Note
that Q is replaced by an “effective” local reactivity
0 = Q/(1+Qt) which saturates at the local relaxation
rate ¢, '. Now since unentangled melts are known to ex-
hibit Rouse-like [18] dynamics (z =4 and g=0), it fol-
lows that for d =3 this reaction probability approaches
unity for V>>1 since 8=d/4 < 1. That is, the kinetics
are driven to diffusion-controlled (DC) form by increas-
ing N, and Eq. (6) leads to Doi’s result [2] k = R3/7. In
contrast, dilute solution kinetics are intrinsically of mean
field (MF) form since 8> 1 (z =d, g > 0) and reaction is
very improbable when two coils collide; increasing N
drives kinetics to the MF result [24] k = QVPE™. The
essential point is that the mean numbers of functional
group collisions are, respectively, increasing (N !
~N'?) and decreasing (N®'= N ~*¢) functions of
chain length in melts and dilute solutions.

Let us now address general polymer concentrations be-
tween these two extremes. It is well known [18,25] that
semidilute polymer solutions in which the chains overlap
strongly are characterized by a screening length £. One
may think of these screening effects in terms of a “melt of
blobs” picture [18] in which the blob size is identified
with the screening length; properties within a blob are di-
lutelike, while on large scales screening results in meltlike
behavior. Note that in relating dynamical properties in
the melt to those in the semidilute state it is essential to
allow for concentration dependence [18,26] of the chain
length at which entanglements onset, N.. This depen-
dence will feature prominently in our results for entan-
gled systems (see below). Thus (see Fig. 1), our problem
translates into a melt containing reactive polymers, each
viewed as a string of N/s blobs where [18] s=¢ ~%* is
the number of monomers per blob. One blob per reactive
chain has effective reactivity Q.s, determined by_the
small scale MF dilute solution kinetics: Qe.x=Q(h/
£)4*¢ This is reduced from Q by a factor equal to the
conditional functional group contact probability given

that a pair of reactive blobs overlap one another. For-
mally, beginning with unentangled solutions, one finds
two short time reaction exponents: 6, =1+g/d (dilute-
like) and 6, =d/4 (meltlike) for scales, respectively, less
than and greater than the blob scale. Equation (1) then
leads to the same structure as that in Eq. (6), but now
with a concentration-dependent & ! (4 =3):

Nl (N/s) V25— e )

This expression is simply the melts result for chains of
N/s units multiplied by the dilute result for chains of
length s; i.e., Nl is the product of the number of reac-
tive blob collisions with the number of reactive group col-
lisions per reactive blob collision. Since s is a strongly de-
creasing function of ¢, Eq. (7) tells us that the total reac-
tion probability grows with increasing polymer concentra-
tion, ultimately driving the kinetics to DC form. Explic-
itly, expressing & °! in terms of ¢, one finds

kdil(¢/¢* )3g/4
1+ (¢/¢:<n* ) 3g/4+5/8

(6> %),

8
oX* =[(Q1,) IN] ~HG+60) | (8)

where k 9! =~ Qh 3N ~*¢ is the dilute (¢ < ¢*) result [24].

Thus far we have ignored entanglements [4] which will
dominate the dynamics of chains longer than a certain
concentration-dependent threshold N.(¢). We assume a
power law N, (¢) =N "¢ 7 where experimental values
[26] of the exponent lie in the range 1 < yS1.3. Calcu-
lating S(¢) in the framework of the reptation model [4]
one finds N~ (N/s)¥%(s/N,)s ~*8, which is again a
strongly increasing function of ¢. The same logic dic-
tates, therefore, that increasing polymer concentration
drives the kinetics from MF to DC form:

kdil(¢/¢*)3gl4

p— *
= TH(lprn) e 9707
Qt 2/3 —12/(5+6g+8y) ©)
h
¢:“TE [ Nemelts ] }

At fixed N, Eq. (9) reproduces the experimental behav-
ior, at least qualitatively (see Fig. 2). In the MF regime
(¢* < ¢ < o¢&t), the key property is a purely static one,
P&™, which increases with concentration as excluded-
volume repulsions become increasingly screened out.
Thus k itself increases, k ~¢%/*=¢%2 for end groups
(since [21] g=0.27). We note that this is close to, but
different from, the conclusion of Kent ez al. [17]1 who as-
cribed the increase of k in this regime to both reduced in-
tercoil repulsions and increased relaxation time. Howev-
er, this screening has a second effect: The reaction prob-
ability (Ot M) grows, reaching unity by ¢= ¢Xt
~N 7982 (taking y=1) where DC Kkinetics onset.
Beyond this concentration, therefore, k~R3/t is rapidly
decreasing since both coil size R and relaxation rate 7 !
diminish, leading to k~¢ ~®/8*7) That is, k exhibits a
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peak at about ¢ =¢a&t. (Note the strong dependence on

reactive group location via g; shifting the groups from
chain ends to internal locations, for instance, the MF re-
gime is a considerably stronger growth, k ~¢%%3, since
[21] g=0.71 is much larger.) The sequence for the
unentangled case [Eq. (8)] is similar, but with a peak
around ¢F¥ ~N ~%¢ followed by a milder decay, k
~¢ ~¥% Though quantitative comparison with the ex-
perimental data of Mita, Horie, and Takeda [Fig. 2(a)] is
rather difficult, since the two reacting species and the in-
ert chains are of three unequal molecular weights, its im-
portant feature for the longest chain sample is the peak in
k at a concentration well above the overlap threshold ¢*,
beyond which the slope of slightly less than —1.6 sug-
gests in our picture y= 1.

The question remains as to which of the two evolutions
in reaction kinetics, entangled or unentangled, is actually
realized for a given system. This depends on the value of
6., namely, the concentration, at fixed NV, at which entan-
glements first become important: N.(¢.)=N, i.e., ¢,
= (N/NJelts) =1/7 [ fact, from the expressions for ¢r¥
and @&, an important relationship follows:

dut(pe) o =(p2)1*e a=8y/(5+6g), (10)
* %

implying that ¢&¥ always lies between ¢4y* and ¢,. Thus
a given reacting polymer system may be classified as ei-
ther “weakly reactive” (g, < odnf < ¢un’) or ‘‘strongly
reactive” (pi¥ < od¥ < ¢.). In “weak” systems the ob-
served behavior is that of Eq. (9); i.e., the entire “trajec-
tory” of k as ¢ increases is that described within the en-
tanglements picture. Meanwhile in a “strong” system the
unentangled DC regime (k ~¢ ~>%) onsets before entan-
glements become important; k is then governed by Eq.
(8) for ¢ < ¢, switching directly to the entangled DC re-
gime for ¢> ¢, i.e., k~¢ ©#*Y  Returning to the
data of Fig. 2(a), if one takes [27] y=1 and
Nelts = 200, then ¢, =0.05 and the system would ap-
pear to be a weak one (¢, being less than the ¢ value at
which k is peaked).

In conclusion, we have found that reaction kinetics in
semidilute solution are closely related to those in melts
and dilute solutions; these latter determine, respectively,
the large and the small scale features of the kinetics. In a
“melt of blobs” picture, since melt kinetics are intrinsi-
cally DC, the dilute MF kinetics inevitably cross over to
DC as concentration is increased. The essential point is
that the total probability of reaction, P, when two live
coils encounter one another is an increasing function of
polymer concentration ¢ due to the enhancement of
screening. At low ¢, P is small and mean field kinetics
pertain which dictate that k increases with ¢, due also to
screening. However, P eventually reaches unity at a cer-
tain concentration ¢** and reaction is then inevitable
whenever two coils collide: These are DC kinetics, under
which k is a decreasing function of ¢. It follows that & is
peaked at ¢**. Thus a coherent theoretical picture of re-
action kinetics now exists across the entire concentration
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range; we have demonstrated qualitative agreement with
experiment which exhibits power law decay in the DC re-
gime suggestive of a value of the entanglement exponent,
7, close to unity. Systematic experimental explorations of
the semidilute regime are motivated by the present work,
and a number of new possibilities are now available,
among the most interesting being the development of a
“first principles” theory of free radical polymerization.
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discussions with Jane Yu are gratefully acknowledged.

[11 G. Wilemski and M. Fixman, J. Chem. Phys. 60, 878
(1974).

[2] M. Doi, Chem. Phys. 11, 115 (1975).

[3] A. R. Khokhlov, Makromol. Chem. 2, 633 (1981).

[4] P. G. de Gennes, J. Chem. Phys. 76, 3316 (1982); 76,
3322 (1982).

[5] B. Friedman and B. O’Shaughnessy, Phys. Rev. Lett. 60,
64 (1988).

[6] A. Rey and J. J. Freire, Macromolecules 24, 4673 (1991).

[71 J.-M. Debierre and L. Turban, J. Phys. A 20, 4457

(1987).

[8] I. Mita, K. Horie, and M. Takeda, Macromolecules 14,
1428 (1981).

[9] M. S. Gebert and J. M. Torkelson, Polymer 31, 2402
(1990).

[10] I. Mita and K. Horie, J. Macromol. Sci., Rev. Macromol.
Chem. Phys. C 27,91 (1987).

[11]1 P. Flory, Principles of Polymer Chemistry (Cornell Univ.
Press, Ithaca, New York, 1971).

[12]1 T. J. Tulig and M. Tirrell, Macromolecules 14, 1501
(1981).

[13] M. E. Cates and S. F. Candau, J. Phys. Condens. Matter
2, 6869 (1990).

[14] T. L. Madden and J. M. Deutsch, J. Chem. Phys. 94,

1584 (1991).

[15]1 Y. Rabin and H. C. Ottinger, Europhys. Lett. 13, 423
(1990).

[16] A. M. North and G. A. Reed, Trans. Faraday Soc. 57,
859 (1961).

[17]1 M. S. Kent, A. Faldi, M. Tirrell, and T. P. Lodge, Macro-
molecules 25, 4501 (1992).

[18] P. G. de Gennes, Scaling Concepts in Polymer Physics
(Cornell Univ. Press, Ithaca, New York, 1985).

[19] M. Doi, J. Phys. A 9, 1479 (1976).

[20] B. Friedman, G. Levine, and B. O’Shaughnessy, Phys.
Rev. A 46, R7343 (1992).

[21] J. des Cloizeaux, J. Phys. (Paris) 41, 223 (1980).

[22] T. A. Witten and J. J. Prentis, J. Chem. Phys. 77, 4247
(1982).

[23] B. Friedman and B. O’Shaughnessy, Europhys. Lett. 21,
779 (1993).

[24] B. Friedman and B. O’Shaughnessy, Macromolecules (to
be published).

[25] M. Doi and S. F. Edwards, The Theory of Polymer Dy-
namics (Clarendon Press, Oxford, 1986).

[26] W. W. Graessley and S. F. Edwards, Polymer 22, 1329
(1981).

[27]1 J. D. Ferry, Viscoelastic Properties of Polymers (John
Wiley and Sons, New York, 1980), 3rd ed.



