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A symmetric phase-field model is used to study directional solidification in two and three dimen-
sions. Numerical evidence of tip-splitting, breathing modes, solitary modes, and other non-steady-
state behavior is seen in 2D. A simple model for the breathing modes is proposed. Finally, 3D
simulations indicate a hexagonal ordering of cells.
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The process of directional solidification provides an
interesting example of nonlinear nonequilibrium physics
[1—14]. In a typical experiment a liquid is pulled through
a temperature gradient 0 at a constant velocity v such
that behind (ahead of) this gradient a solid (liquid) phase
is stable. When the chemical composition of the two
phases is difFerent at coexistence, the liquid/solid inter-
face develops a steady-state periodic cellular structure
for a range of v and 0, while non-steady-state interfaces
display many interesting phenomena [1,3—6,10,12,14], in-

cluding tip splitting, pinching, breathing, and solitary
modes. In this paper we introduce a phase-Beld model
to study numerically directional solidification in 2D and
3D. The motivation is to show that the model contains
the correct physics, has the mathematical simplicity to
make numerical simulations feasible and to provide new
insight into some non-steady-state phenomena.

The phase-Geld model we propose is an extension of
the one developed for solidification processes [15]. The
phenomenology that enters this model is at the level of
phase fields and does not require such approximations
[2,8,9,11,13,14] as the quasistationary approximation and
the infinitely thin liquid/solid interface limit that en-
ter sharp interface models. Nevertheless, the phase-Beld
model reduces to the sharp interface equations in the ap-
propriate limit. The free energy can be written as

P= dx D&~Vp~'+ p(—p' I)'+ pb-, pU'+—ATp . -
2 4 2

Here, P is a nonconserved field describing the liquid/solid
transition, U = c+ P/AP, c is a dimensionless diffu-
sion field proportional to the impurity concentration, and
AT = T —T, where T is proportional to temperature
and Tm to the melting temperature. AP is the misci-
bility gap and Dy, P, and p are phenomenological con-
stants [15). The dynamics of these fields can be written
BP/Bt = I'~6%/bP and Bc/Bt =—I', /(pAP)V'2(H /6c),
where I'y and I', are the mobilities of P and c, respec-
tively. For simplicity, a symmetric model is considered
where the mobilities are independent of P. In a frame
moving in the z direction at speed v, the dynamics can
be written as

dP/dr = DyV' P+ P(P —P ) —pU —AT(z'),

dU/d~ = D~V' U+ (dP/d~)/AP,

(2)

(3)

where z'—:z —vr, d/dr—:B/B r—vB/Bz', D~ =—I', /I'~,
and ~ = I'yt. The moving temperature gradient is imple-
mented by AT(z') with AT = AT, fo—r z' ( —W, z'G
for ~z'~ ( W and ATO for z' & W, where G:—ATO/W.
The average impurity concentration is taken to be co = 0
and ATO & p/Ap so that the temperature AT(z') is
above (below) the liquidus (solidus) line for z' & W
(z' ( —W). In this model the partition coefficient is
1.

The 2D sharp interface equations [2,8,9,11,13,14] can
be easily obtained using standard methods [15—19] from
Eqs. (2) and (3). Far from the interface, ~z'~ && W,
dp/d~ is negligible so that vBU/Bz' + D~V2U = 0.
One boundary condition can be obtained by integrat-
ing Eq. (3) across the interface to give, in the limit of
a sharp interface, (v + ( )n z = D~(VU~, —VU~t) n.
Here, n is the direction normal to the interface position
((), which is defined by P(z' = () = 0, and the sub-
scripts l and s refer to the liquid and solid sides of the
interface, respectively. To obtain the Gibbs-Thomson
condition, we write P = Pi + 6P where Pi~ satisfies
D~V P +P[P —(P ) ]

= 0 and introduce a coordi-
nate u along n. Integrating Eq. (2) over Bp /Bu gives
U(to = 0) —(1+U~) = —do~ —g/lT, where de =— /2',
cr—:Dy f du(BP D/Bu)~, lz = p/G, and r is the curva-
ture. This equation was obtained by expanding to lowest
order in K, and ignoring the time dependence of tv and hP.
The diffusion equation and the two boundary conditions
form the basis of the sharp interface model of directional
solidification.

Numerical simulations of Eqs. (2) and (3) were per-
formed on a discrete lattice with free boundary condi-
tions in the i direction and periodic in the others. A
nearest-neighbor Laplacian and Euler's method for the
time derivatives was used. The mesh size was 1.0 and
the time step was 0.1. To begin each simulation 1D solu-
tions (i.e. ,

PiD and UiD) were obtained numerically and
the initial state was set to p(x, z') = p (x, z' —((x, 0))
and U(x, z') = U D(x, z' —((x, 0)). For all the simula-
tions presented, P = 1 and ATe = 0.38. The parameter
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FIG. 3. Groove positions (u„) as function of time from
Eqs. (2) and (3) (points) and Eq. (4) (lines). The (distance,
time) spanned is (500, 250000). Inset: Comparison of results
for box region.

FIG. 4. Dispersion relation from simulation of Eq. (4)
compared to that from phase-field model. The points are
the peaks of S(k, u) obtained from phase field model and the
lines [u(k)] were obtained from the groove dynamics.

0'v„/Ot" = C [(2+v„—v~ i)/(1+ v —v i)

with C oc EcA Io dx~("i, u„=—A(n + v„), andt':—r/A. Equation (4) was simulated with the initial
set of groove positions taken directly from the numeri-
cal simulation, and C was adjusted to obtain the best
fit to the numerical data from phase-field simulations. A
comparision is shown in Fig. 3. This calculation is equiv-
alent to expanding the force on the nth groove to lowest
order in curvature which is assumed to be inversely pro-
portional to the distance between grooves. It can also be
written I"„=A(r„—r„+r)+,where r„ is the average
curvature of the nth and (n —1)th grooves.

Equation (4) is equivalent to particles with equilibrium
positions v„= 0 connected by very anharmonic springs.
A linear analysis gives u, = 2~C~ sin(k/2)~ which is
identical to an acoustic mode in a monatomic Bravais
lattice. The influence of the anharmonicity was studied
by simulation from an initial state given by v„= e„+
O. lcos~n where e„ is a random number with ~e„~ ( 0.3.
A system of 512 grooves with periodic boundary condi-
tions on v„was averaged over 104 runs. The peaks in
the dynamic structure factor S(k, u) = (~v(k, w)

~ ), with
v(k, w) = I dt P v~(t) expi(2vrnk/512 + ut), occur at
~ = 2~C[2m +

~
sin(k/2) ~] and at cu = 2v C[2m + 1 +

i cos(k/2)~] for m = 0, +I, +2, . . . . The largest of these
are at zone boundaries, k = vr, corresponding to breath-
ing modes of frequency ub = 2v C. Since t' = v. /A, we
obtain the result that ag (x A ~. This relation was ob-
served in experiments on a cholesteric/isotropic interface
[3] where coupling to the helical pitch plays an important
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FIG. 5. Contour plot, ~(~ & 2.5 in steps of 0.5, of 2D inter-
face in 3D system. The large circular contours correspond to
"hills" and the smaller triangular contours to "valleys. "

role. In Fig. 4 the dispersion relation obtained from Eq.
(4) is compared with that obtained from the phase field
equations with satisfactory agreement.

To illustrate the advantages of a phase-field model, a
3D simulation was done on a cubic lattice with the pa-
rameters given by a linear stability analysis. L = L„=
I„=100 and g(x, y, 0) is white noise of unit amplitude.
Figure 5 shows a contour plot of ( after a steady state
was reached and hexagonal ordering of the cells is clearly
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seen which is consistent with experiment [7] and theoret-
ical expectations [9].

In summary, the usefulness of a full phase-field model
in examining the behavior of directional ordering is estab-
lished. The model is consistent with the sharp interface
equations in the appropriate limit and reproduces many
non-steady-state phenomena. New insight into the phe-
nomena of breathing modes was discovered, leading to a
prediction for the full dispersion relation. We hope these
results will provide the stimulus for future experiments.
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