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A symmetric phase-field model is used to study directional solidification in two and three dimen-
sions. Numerical evidence of tip-splitting, breathing modes, solitary modes, and other non-steady-
state behavior is seen in 2D. A simple model for the breathing modes is proposed. Finally, 3D

simulations indicate a hexagonal ordering of cells.
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The process of directional solidification provides an
interesting example of nonlinear nonequilibrium physics
[1-14]. In a typical experiment a liquid is pulled through
a temperature gradient G at a constant velocity v such
that behind (ahead of) this gradient a solid (liquid) phase
is stable. When the chemical composition of the two
phases is different at coexistence, the liquid/solid inter-
face develops a steady-state periodic cellular structure
for a range of v and G, while non-steady-state interfaces
display many interesting phenomena [1,3-6,10,12,14], in-
cluding tip splitting, pinching, breathing, and solitary
modes. In this paper we introduce a phase-field model
to study numerically directional solidification in 2D and
3D. The motivation is to show that the model contains
the correct physics, has the mathematical simplicity to
make numerical simulations feasible and to provide new
insight into some non-steady-state phenomena.

The phase-field model we propose is an extension of
the one developed for solidification processes [15]. The
phenomenology that enters this model is at the level of
phase fields and does not require such approximations
[2,8,9,11,13,14] as the quasistationary approximation and
the infinitely thin liquid/solid interface limit that en-
ter sharp interface models. Nevertheless, the phase-field
model reduces to the sharp interface equations in the ap-
propriate limit. The free energy can be written as

F= /dx[-;—D¢|V¢>|2+?}ﬂ(¢2—1)2+%7A¢U2+AT¢].
(1)

Here, ¢ is a nonconserved field describing the liquid/solid
transition, U = ¢ + ¢/A¢, ¢ is a dimensionless diffu-
sion field proportional to the impurity concentration, and
AT = T — Ty, where T is proportional to temperature
and T, to the melting temperature. A¢ is the misci-
bility gap and Dy, B, and 7 are phenomenological con-
stants [15]. The dynamics of these fields can be written
8¢/8t = —T'46F /8¢ and Bc/8t = T'./(yAp)V?(6F/bc),
where 'y and I'. are the mobilities of ¢ and ¢, respec-
tively. For simplicity, a symmetric model is considered
where the mobilities are independent of ¢. In a frame
moving in the Z direction at speed v, the dynamics can
be written as

dp/dr = DgV?¢ + B(¢ — ¢°) — U — AT(2'), (2)
dU/dt = DyV2U + (d¢/dT)/Ad, (3)

where 2’ = 2z —vr, d/dr = 8/01 —v9/0z', Dy =T:/T,
and 7 = ['¢t. The moving temperature gradient is imple-
mented by AT(2’) with AT = —AT, for 2/ < —-W, 2/G
for |2/| < W and ATy for 2/ > W, where G = ATy/W.
The average impurity concentration is taken to be co = 0
and ATy > v/A¢ so that the temperature AT(2') is
above (below) the liquidus (solidus) line for 2’ > W
(2 < —W). In this model the partition coefficient is

1.
The 2D sharp interface equations [2,8,9,11,13,14] can

be easily obtained using standard methods [15-19] from
Egs. (2) and (3). Far from the interface, |2'| >> W,
d¢/dr is negligible so that v8U/8z' + DyV2U = 0.
One boundary condition can be obtained by integrat-
ing Eq. (3) across the interface to give, in the limit of
a sharp interface, (v + {;)f -2 = Dy (VU|, — VU|;) - .
Here, 1 is the direction normal to the interface position
(¢), which is defined by ¢(2’ = ¢) = 0, and the sub-
scripts | and s refer to the liquid and solid sides of the
interface, respectively. To obtain the Gibbs-Thomson
condition, we write ¢ = ¢'P + §¢ where ¢'P satisfies
DyV2¢P 4 B[P — (¢'P)%] = 0 and introduce a coordi-
nate u along n. Integrating Eq. (2) over 8¢'P /0u gives
U(w=0) - (14 Ux) = —dok — {/lr, where dp = 0/27,
o = Dy [ du(8¢'P /0u)?, Ir = v/G, and k is the curva-
ture. This equation was obtained by expanding to lowest
order in k and ignoring the time dependence of w and §¢.
The diffusion equation and the two boundary conditions
form the basis of the sharp interface model of directional
solidification.

Numerical simulations of Egs. (2) and (3) were per-
formed on a discrete lattice with free boundary condi-
tions in the Z direction and periodic in the others. A
nearest-neighbor Laplacian and Euler’s method for the
time derivatives was used. The mesh size was 1.0 and
the time step was 0.1. To begin each simulation 1D solu-
tions (i.e., ¢'P and U'P) were obtained numerically and
the initial state was set to ¢(z, 2’) = ¢'P(z, 2’ — {(z,0))
and U(z,2') = U (x, 2’ — ¢(x,0)). For all the simula-
tions presented, 8 = 1 and AT, = 0.38. The parameter
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set (Lg, L,,v, D¢, Dy, W,v) and {(z,0) will be specified
for the individual simulations discussed below. The pa-
rameters were chosen so that the ratios 7/l and [/dy
(I = 2Dy /v) are similar to those in recent experiments
[1,5] on the liquid crystal 4-n-octylcyanobiphenyl (8CB).

The first simulations were conducted to analyze the
stability of a planar interface to small perturbations.
For this test, {(z,0) = Apcos(kz) and the parameter
set was (27/k,150,0.73,1.5,2,50,0.2). By fitting {(z,7)
with Aoe?®)7cos(kx), an estimate of the linear disper-
sion relationship w;(k) was obtained. In Fig. 1 the
numerical results are shown to be quite close to the
predictions [8] of the sharp interface model: wy(k) =
v[v/1+ (k1)2(1 — l/lr — dolk?) — 1]/I. For the same pa-
rameter set, with L, = 1000 and ¢(z,0) unit amplitude
white noise, a stationary solution was obtained as shown
in the inset of Fig. 1 in both real and Fourier space,
¢(k) = [dze*=((x).

Various non-steady-state effects were seen (Fig. 2) as
observed in experiments [1,3-6] and simulation [10]. The
tip-splitting instability shown in Fig. 2(a) was obtained
by increasing the velocity from v = 0.2 to 0.4 over a time
7 = 5 with parameters (500,163,0.72,1.5,1,25,0.2 —
0.4). Two colliding solitary modes can be seen in Fig.
2(b) obtained by an instantaneous velocity jump from
v = 0.5 to 0.3 for the set (500,221,0.4,1.5,1,25,0.5 —
0.3). Other exotic patterns were formed during velocity
changes, one example as shown in Fig. 2(c) in which the
velocity was increased from 0.03 to 0.07 over a time range
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FIG. 1. Linear dispersion relation around a planar inter-
face. The points correspond to numerical integration of Eqs.
(2) and (3) and the solid line corresponds to the sharp inter-
face result [w,(k)] given in the text. Inset: Stationary inter-
face in real and Fourier space.
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of 40 for the set (500, 163,0.72,1.5,1,200,0.03 — 0.07).
Breathing modes were observed in a variety of ways.
A slight increase in the pulling velocity sometimes cre-
ated small regions of collective oscillations. They were
also generated by an z-dependent temperature gradi-
ent, AT (2’ — f(z)), where f(z) = 1.61 x 10522 —
0.008z + 0.008. For the set (500,175,0.63,1.5,1,50,0.2)
and a random initial interface, a collective breath-
ing state emerged. Breathing modes were also cre-
ated by an initial configuration of the form {(z,0) =
cos(24mz/Ly) + cos(12nz/L,), as shown in Fig. 2(d) for
the set (495,175,0.63,1.5,1, 50,0.2). They were also ob-
tained using the same parameter set and random ((z, 0).
To understand the breathing modes we propose a sim-
ple model for the positions of the grooves. The nth groove
is at T = uy, defined by (z|,,, = 0 and (yz|n, > 0. We ex-
plicitly assume breathing modes exist and do not attempt
to study the instability that creates them [14]. Following
the idea that all forces are thermodynamic, we assume
the grooves can be treated as particles with a force F act-
ing between them, determined by the change in free en-
ergy density AFE for a uniform expansion or contraction
of the steady-state interface shape (**(z). The impor-
tant contributions to the free energy of the interface come
from gradients in ¢ and ¢, which we approximate to be
|Vé(2'—{(z,7))|? = (1+¢2)|d¢/dw|? and similarly for c.
Thus, AE is of the form AE ~ EcA~! fo’\ dz|¢es(z)|? —

A1 + €))7 2049 dg|ces(z/(1 + €))[?] where A is the
average groove spacing, 1 + € is the fractional expansion,
and E¢ is a linear combination of [% _dw|d¢/dw|? and
JZ5, dw|dU/dw|?. Using FeX = AE and considering ex-
pansions or contractions due to u,1 and u,_;, we obtain
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FIG. 2. Non-steady-state interfaces from Egs. (2) and (3).
Tip splitting (a); collision of two solitary modes (b); exotic
pattern (c); and breathing modes (d). The (z,y) axes are
(distance, time) of (200, 1900) (a), (400, 2500) (b), (500, 8400)
(c), and (200,13 750) (d).
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FIG. 3. Groove positions {un} as function of time from
Egs. (2) and (3) (points) and Eq. (4) (lines). The (distance,

time) spanned is (500, 250000). Inset: Comparison of results
for box region.

0%, /0t = C (2 +Vn — Vn-1)/(1 + Vp — Vp_1)?
— 2+ vpg1 —vn) /(1 +Vpg1 — vn)zl’ (4)

with C o« EgA~! fo'\ dz|¢2®|?, un = A(n + v,), and
t’ = 7/X. Equation (4) was simulated with the initial
set of groove positions taken directly from the numeri-
cal simulation, and C' was adjusted to obtain the best
fit to the numerical data from phase-field simulations. A
comparision is shown in Fig. 3. This calculation is equiv-
alent to expanding the force on the nth groove to lowest
order in curvature which is assumed to be inversely pro-
portional to the distance between grooves. It can also be
written Fy, = A(Kn —Kn+t1)+- -+, where K, is the average
curvature of the nth and (n — 1)th grooves.

Equation (4) is equivalent to particles with equilibrium
positions v, = 0 connected by very anharmonic springs.
A linear analysis gives w,c = 2v/C|sin(k/2)| which is
identical to an acoustic mode in a monatomic Bravais
lattice. The influence of the anharmonicity was studied
by simulation from an initial state given by v, = €, +
0.1cosmn where €, is a random number with |e,| < 0.3.
A system of 512 grooves with periodic boundary condi-
tions on v, was averaged over 10* runs. The peaks in
the dynamic structure factor S(k,w) = (|v(k,w)|?), with
v(k,w) = [dtY, vn(t) expi(2mnk/512 + wt), occur at
w = 2v/C[2m =+ |sin(k/2)|] and at w = 2v/C[2m + 1 +
|cos(k/2)|] for m = 0,+1,+2,.... The largest of these
are at zone boundaries, k = 7, corresponding to breath-
ing modes of frequency wy, = 2v/C. Since t' = 7/\, we
obtain the result that wp o« A~1. This relation was ob-
served in experiments on a cholesteric/isotropic interface
[3] where coupling to the helical pitch plays an important
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FIG. 4. Dispersion relation from simulation of Eq. (4)
compared to that from phase-field model. The points are
the peaks of S(k,w) obtained from phase field model and the
lines [w(k)] were obtained from the groove dynamics.

role. In Fig. 4 the dispersion relation obtained from Eq.
(4) is compared with that obtained from the phase field
equations with satisfactory agreement.

To illustrate the advantages of a phase-field model, a
3D simulation was done on a cubic lattice with the pa-
rameters given by a linear stability analysis. L, = L, =
L, =100 and ¢{(z,y,0) is white noise of unit amplitude.
Figure 5 shows a contour plot of ¢ after a steady state
was reached and hexagonal ordering of the cells is clearly
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FIG. 5. Contour plot, |¢| < 2.5 in steps of 0.5, of 2D inter-
face in 3D system. The large circular contours correspond to
“hills” and the smaller triangular contours to “valleys.”
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seen which is consistent with experiment [7] and theoret-
ical expectations [9)].

In summary, the usefulness of a full phase-field model
in examining the behavior of directional ordering is estab-
lished. The model is consistent with the sharp interface
equations in the appropriate limit and reproduces many
non-steady-state phenomena. New insight into the phe-
nomena of breathing modes was discovered, leading to a
prediction for the full dispersion relation. We hope these
results will provide the stimulus for future experiments.
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