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A simple model for the sintering of materials made of connected fractal aggregates, such as aerogels,
is proposed. The densification at small scales is described by an increase of the lower cutoff length ac-
companied by a decrease of the upper cutoff length, in order to conserve the total mass of the system.
General scaling laws are derived which relate the structural characteristics to the mean bulk density.
The theory explains quite satisfactorily a large number of experiments on gradually densified silica aero-
gels.
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Sintering is of major importance in materials science
and technology since it is widely used as a strengthening
process in the fabrication of common materials such as
metals, glasses, ceramics, etc. It generally proceeds by
heating, sometimes with the aid of pressure. Starting
from a sample generally made of an assembly of fine par-
ticles, sintering produces internal toughening by gradual-
ly decreasing the total surface energy with rising temper-
ature [I]. ln the solid state, this decrease of energy may
be indicated either by a change in whole surface of the
material or by a change in the nature of the interface in-
teractions. Sintering can be due to different kinds of
mass transfers: evaporation jdeposition, surface diffusion,
viscous flow of matter, etc. , but, in the case of glasses and
gels, sintering is essentially due to viscous How of matter
and it is accompanied by a shrinkage of the sample;
hence the material densifies.

Several theoretical models have been proposed to de-
scribe the shrinkage rate as a function of time [1-5]. The
old theory of Frenkel [2], which considers couples of
tangent spheres, can only explain the first few percent of
shrinkage. The model of Mackenzie and Shuttleworth
[3], which considers a medium consisting of closed pores
of identical sizes, applies well to the last stages of sinter-
ing. More recent theories by Scherer, which consider
cylinders [4] or other geometrical shapes [5], are more
convincing since they intend to cover the full range of
densities and have been successfully applied to glass
sintering. However, these theories, due to their geometri-
cal restrictions, are sometimes hard to extend to complex
disordered structures.

Fortunately, several low-density materials, such as
aerogels, exhibit very interesting scaling invariance.
They are probably the best example of fractal geometry
[6] in materials science, as demonstrated by their dynam-
ical [7] and structural [8] properties. We now believe
that they are made of connected fractal aggregates or
"blobs" that have been grown by cluster-cluster aggrega-
tion [9]. Scaling occurs in a range of length scales ex-
tending from the mean size a of the subunits (of which
the aggregates are made) up to the mean connecting dis-

tance g between the aggregates.
In this Letter, we present a novel theoretical approach

to sintering which is intended to model the densification
of aerogels. This approach has the advantage of being
general in the sense that only global symmetries of scale
invariance and mass conservation are used. Therefore the
model can ignore the detailed characteristics of the ma-
terial such as surface energy, viscosity, etc. Furthermore,
it does not require knowledge of the densification rate.
With respect to these features, our approach appears to
be more general than the previous ones. The main ap-
proximation is that the blob picture remains valid and
that its general topology is not destroyed during the
densification process. As a result of our scaling approach,
the fractal dimension of the blobs remains unchanged but
the smaller and the larger cutoffs a and g vary in opposite
directions and tend to each other; the extension of the
fractal regime is thus gradually reduced during sintering.
Several scaling laws are established and we show, in this
Letter, that they are able to explain quite satisfactorily a
wide range of experiments on partially densified silica
aerogels.

Our reasoning is based on simple scaling ideas. Imag-
ine that, at a given stage of sintering, the cutoffs of a typ-
ical fractal blob are a and ( [case (a) of Fig. I]. At a
later stage, the sintering process leads to a new structure
for this blob, characterized by a' ) a and (' & ( [case (c)
of Fig. I]. The increase of the lower cutoff results from
the smoothing of the internal surface of the aggregate
due to local transfers of matter from large curvature to
small curvature regions and reinforcements of thinner
arms. Consequently, there should be a decrease of the
larger cutoff in order to ensure the mass conservation of
the whole system. If there is not too much dispersion of
the blob sizes, the length contraction ('/( of a given ag-
gregate should be equal to the overall length contraction
of the bulk and the following "trivial" scaling should
hold:

where p is the bulk density.
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FIG. I. A two-dimensional sketch of an aggregate at two

successive stages of sintering, (a) and (c), where the cutoffs
vary from a and ( to a') a and g' & g. The intermediate aggre-
gate (b) is obtained by enlarging aggregate (c) by (/('.
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Now, let us imagine a hypothetical intermediate stage
[case (b) of Fig. 1], where the final aggregate has been
enlarged by the factor g/(' in all three space directions to
fit the size of the original aggregate. The lower cutoff at
this intermediate stage is aI =a'(/('. The aggregate (b)
can be considered as a coarse-grained version of aggre-
gate (a). Details of lengths ranging from a to aI have
been erased, as done in standard real-space renormaliza-
tion-group methods [10]. Thus both the size and the
fractal dimensions of aggregate (b) are the same as those
of aggregate (a) but its lower cutoff is larger. Using the
definition of the Hausdorff-Besicovitch fractal dimension
D [6], one can estimate that the minimum number N of
balls of size a necessary to cover the aggregate (a) is re-
lated to the corresponding number N' of balls of size a1
in case (b) by

r rD Da'(
ag'

N'
N' (2)

a

Furthermore, to ensure mass conservation between (a)
and (c),

Na =N'a' . (3)

Combining Eqs. (2) and (3), it can be seen that
—D/(3 —D)

I I

(4)

Then, from (1) and (4), one can find how a scales with p:
D/3(3 —D) (s)

We have used spherical balls to cover the aggregate,
but apart from some corrections to scaling, any object of
different shape could have been used. As a consequence,
the results do not depend on the precise topology of the
local external surface of the aggregate, as long as its
lower cutoff a is well defined (in average). This under-
lines the very general character of our reasoning. Obvi-
ously our theory is not more valid when a approaches g.
At this stage it remains holes of all the same mean size (a
or g) and the densification mechanism becomes similar to

FIG. 2. Log-log plots of the two cutoffs a and g versus the
bulk density p for two different aerogel samples A (&,~) and B
(x,cl), as deduced from an analysis of small angle neutron
scattering intensity. Straight lines of slope —

—, have been
drawn through the data for g.

that of standard porous materials. Moreover when a be-
comes close to (, the existence of a size distribution of
blobs should induce some corrections to scaling due to the
fact that smaller blobs are completely densified earlier
and do not participate further to the bulk contraction.
However, before introducing such refinements, it can be
enlightening to compare our conclusions with experi-
ments.

Small angle neutron scattering (SANS) experiments
have been performed on gradually densified silica aero-
gels. These samples, which can be characterized by their
mean density p, have been obtained by starting from
similar materials (resulting from the same sol-gel pro-
cess) but stopping the heating process at different tem-
peratures. The smaller and larger cutoffs have been es-
timated from the experimental scattering intensity curve
1(q) by locating the limits of the linear fractal regime in

a log-log plot. This has been done quantitatively by
means of the so-called "Teixeira formula" [11]. The re-
sults are given in Fig. 2 for two different series of samples
2 and 8 which correspond to different starting aerogels,
prepared using different conditions during geling and hy-
percritical drying (2 and B are respectively called N26
and N46 in previous papers [12]). These samples have
been chosen because their fractal regime is quite large.
Their fractal dimensions have been estimated to lie in the
range 2.2-2.4. In Fig. 2, a straight line of slope ——' has
been drawn through the data for g to show that Eq. (1) is

qualitatively well verified by experimental results, giving
support to the assumptions of our model. The fit of lna
versus in@ by a straight line gives a slope of order
0.7+ 0.2 in both cases. According to Eq. (5), this would
lead to D =2.0+ 0.2, a value slightly smaller but not so
far from what is already known.

In Fig. 3 we give other experimental results. The low

frequency Raman spectra have been determined from
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FIG. 3. Log-log plots of the frequency co (cl) of the max-
imum Raman scattering (sample 8), specific surface 5 (x) as
determined from BET experiments (sample 8), and the max-
imum —(dV/dr)m (a) of the pore-size distribution curve
(sample A) versus the bulk density p.

samples 8 [13]. They all exhibit a maximum at a charac-
teristic frequency m which decreases as p increases. The
data for into versus lnp is reported in Fig. 3, exhibiting a
mean slope of about —0.7~0.2. If one knows that m

varies as the inverse of a [14], these results are in good
agreement with the SANS results on the same samples.

The specific internal surface of pores S has been ob-
tained by nitrogen adsorption (Brunauer-Emmet-Teller)
experiments on B samples. Following our sca1ing reason-
ing, one should get

5—lVa —1/a —p (6)

—D/3 2 —D—p r
dr

This formula is in principle valid for a ( r ( g and
—dV/dr should vanish outside this range. When com-
pared with experiments, a complication arises from the

The log-log plot of 5 versus p has a mean slope of
—0.8 ~ 0.1, in qualitatively good agreement with the
preceding results.

We have also performed an investigation of the pore-
size distribution of A samples by means of thermo-
porometry experiments [15]. The curves dV/dr(r), —
giving the number of pores of radii lying between r and
r+dr, have been determined. A11 these curves exhibit a
bell shape with a well defined maximum whose intensity
and position vary with density. A simple scaling analysis
of the pore-size distribution has already been done
[16,17] and leads to the following result for the cumula-
tive volume of pores for an aggregate characterized by
the cutoff g and the fractal dimension D:

V( ) g3 gD 3 —D

(this expression can be obtained by dressing the aggre-
gate with balls of radius r and calculating the remaining
void volume). This leads to

fact that here D is close to 2 and it is not known if the
power-law behavior should be attributed to the rising part
of the descending part of the experimental curve. More-
over, near the cutoAs, the precise shape of the pore-size
distribution cannot be described by the above formula,
due to corrections to scaling. However, if it is impossible
to fit the entire curve, one can take benefit of formula (8),
by observing that the magnitude of —dV/dr near its
maximum (where the scaling holds) should scale as
—p t for D —2. We have plotted the observed max-
imum value of the pore-size distribution as a function of
p in a log-log plot in Fig. 3. We find a slope of order
—0.6, slightly smaller in absolute value, but quite close
to the expected value [18].

For most of the above experimental results, the scaling
range is quite small, only a few points are available, and
their dispersions are large; therefore the uncertainties on
the slopes are important. Moreover, corrections to scal-
ing may enter diAerently in diff'erent cases. However, the
wide range of experiments that are accounted for gives
strong support to the validity of our scaling approach.
The agreement is not so good for other samples where a
and ( are originally too close to each other. It would
therefore be very interesting to analyze the corrections to
scaling that occur when a becomes of order (. This might
be done both analytically, by trying to introduce the size
distribution of blobs, or numerically, by performing the
above described scheme on a computer, starting from
simulated aggregates and dressing them in a manner very
similar to what was done in [17]. The advantage of nu-
merical studies is that corrections to scaling will show up
naturally and that we may be able to reproduce the pore-
size distribution curves. It might also be very interesting
to extend our analysis by including time in order to set up
a "dynamical scaling" approach. However, this cannot
be simply done by continuing to ignore the real mecha-
nisms of sintering. Therefore, in parallel to the present
global theory, progress in the understanding of detailed
microscopic processes is welcomed.

We would like to acknowledge interesting discussions
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