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Periodic Triangular Patterns in the Faraday Experiment
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A pattern of standing surface waves in the form of equilateral triangles is observed in the Faraday
experiment with two-frequency forcing, By perturbing with a third frequency the dynamics of a
"phason mode" is under external control and transitions between triangles and hexagons can be
enforced. The experiment is understood in terms of a three-mode amplitude equation model.

PACS numbers: 47.54,+r, 47.20.Ky, 47.20.Ma

The generation of standing surface waves on a fluid
layer subjected to a vertical vibration (Faraday experi-
ment [1]) provides a variable nonlinear pattern forming
system. Depending on the geometry, the fluid parame-
ters, and the excitation, spatially periodic structures in
form of lines, squares, and hexagons have been observed
[1—5]. Only recently the discovery of two-dimensional
quasipatterns [3—5] (the macroscopic hydrodynamic anal-

ogy to quasicrystals in solid state physics [6]) has at-
tracted much attention.

The present Letter reports the observation of a stable
periodic pattern of equilateral triangles bifurcating su-
percritically from the basic state (plane surface). Even
though investigated theoretically [7], periodic triangular
structures have not yet been observed in experiments.
Triangular and hexagonal patterns are closely related
since both are composed of three plane waves, differing
only by their relative spatial phases (see below). The
mechanism selecting triangular patterns will be explained
and contrasted to that mechanism which favors subcrit-
ically bifurcating hexagons in, e.g. , non-Boussinesq con-
vection [8]. On a more abstract level Golubitsky et al. [7]
exhaustively discussed the bifurcation scenarios of trian-
gular and hexagonal patterns by means of group theoret-
ical tools. They carried out the discussion for Rayleigh-
Benard convection, but their arguments —based solely on
the underlying symmetries —apply in a general context.

The experimental apparatus consists of a cylindrical
plastic container of 80 mm inner diameter. To avoid
meniscus waves, which might distort the determination
of the stability threshold, the edge between the vertical
sidewall and the bottom of the container is rounded by
a curve of 1 cm radius thus reducing the diameter to 60
mm at the flat bottom. The dish is filled with 9 ml sili-
con oil Rhodorsil 47V20 giving a fill depth of about 2.3
mm. At 25'C the fluid possesses a viscosity of 20 x 10
cm2/s, a density of 0.95 g/cms, and a surface tension of
20.6 x 10 s N/m. The container is mounted on the table
of a vibration exciter, which accelerates periodically in
the vertical direction according to

f(t) = a [r cos 2~t + (1 —r) cos(4u)t + &p)]

where ~ = 27t. x 27.9 Hz. The temperature of the fluid is
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FIG. 1. Nonlinear stationary standing-wave patterns in the
form of squares (S), hexagons (H), and triangles (T) saturate
if the forcing amplitude e = a/a, —1 is raised from subcritical-
ity to e 2% above the primary instability of the flat surface.
The subscript "s" ("h") denotes subharmonic (harmonic) re-
sponse with frequency u (2~) and wavelength A, 0.72 cm
(Ag 0.37 cm). In the shaded domain slowly time-dependent
disordered structures of length scale A, appear.

measured by two thermistors in the bottom of the con-
tainer and stabilized at 23'C + 0.1. During the exper-
iment the overall acceleration amplitude a, relative am-
plitude r (0 & r & 1), and phase p are continuously
measured and controlled by a computer. As long as a is
below a critical threshold a, (w, r, y) the surface remains
flat. To visualize the surface deformation the container is
illuminated by a ring of inner/outer diameter 14/18 crn
mounted 128 cm above the fluid. The light reflected at
the surface is detected by a videocamera in the center of
the ring. Further details of the apparatus are described
elsewhere [5].

Figure 1 shows which standing surface pattern satu-
rates if the forcing amplitude a is raised from a subcriti-
cal value to e—:a/a, —1 2%. Within the areas indexed

by the subscript "8" the response of the system is subhar-
monic with respect to the total forcing frequency 2w, i.e. ,

the surface oscillates with w and exhibits a wavelength

A, 0.72 cm. Depending on r and p either squares (S,),
hexagons (H, ), or triangles (T, ) appear. H, and T, have
been combined in a common domain since a systematic
separation is extremely time consuming and only partly
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possible: As soon as the forcing becomes supercritical the
system randomly selects H, or T, on a (fast) time scale
of O(1/e). A subsequent very slow (phase dynamical) se-
lection process finally decides between H, and T„orelse
the pattern keeps fluctuating indifferently between the
two structures. Figures 2(a)—2(c) presents photographs
of the patterns as observed in the H, /T, region. To facil-
itate the identification we compare with computer gener-
ated density plots of ideal surface structures [Figs. 2(g)—
2(i)] and the associated video images, which have been
calculated by taking the (nonlinear) experimental visu-
alization technique into account [Figs. 2(d)—2(f)]. The
triangular pattern of Fig. 2(c) was stable during an op-
eration time of several hours. Even though H, have been
reported earlier [3] this is the first time a stable periodic
tesselation by equilateral triangles has been observed in
a hydrodynamical experiment.

The thick black line in Fig. 1 marks the threshold of
bicriticality separating the subharmonic region from the
harmonic one. Below this line the cos(4wt) forcing is
strong enough for the pattern to respond harmonically
with respect to the total forcing period vr/u, i.e. , to os-
cillate with 2w and a wavelength Ab 0.37 cm. Here,
either squares (Sb) or hexagons (Hh, ) occur, while trian-
gles never appear. Hexagons in harmonic resonance with
the forcing have been observed earlier by Edwards and
Fauve [4].

Ignoring the influence of lateral boundary conditions
the surface deformation in the form of N homogeneous
superimposed standing waves can be expressed as [9,10]

F(t) tent ) f i2lwt ) f i(2t+1)art

L

(3)

i.e., the subharmonic symmetry F(t + vr/w) = —F(t) is
fulfilled, where x/w is the total period of the forcing.
The mode amplitudes A„are supposed to vary slowly
in time; they obey a set of coupled Landau equations
which can be derived from the hydrodynamic equations
by an expansion around the stability threshold. Without
performing this derivation, the amplitude equations —up
to cubic order —will have the form

N

BtA„=eA„—) P(8~„)iA~[A„,
m=1

(4)

In the following we assume [k„[= k, and k„k„+i=
k, cos(~/N) for n = 1, . . . , N, i.e. , the participating +k„
are equidistant on the circle of critical wave vectors. The
real function F(t) describes the temporal evolution of the
response which is either harmonic or subharmonic. For
the subharmonic case one has according to the Floquet
theorem

where 8„~= Z(k„,k~). Even-order nonlinearities do
not appear since the subharmonic symmetry of F(t) en-
forces an A„~—A„invariance of Eq. (4). This tem-
poral resonance condition is analogous to the Boussinesq
symmetry in Rayleigh-Benard convection.

Nonlinear pattern selection by Eq. (4) is governed by
the coupling function P(8), which depends for a given
experimental realization —on the forcing parameters r
and y. Spatial reHection and rotational symmetry im-

ply P(8) = P(—8) = P(vr —8), while combinatorial argu-
ments enforce P(0) = 2P(8 ~ 0) [11,12]. In the follow-
ing we consider stationary solutions of Eq. (4) composed
of equal amplitude plane waves, i.e. , A„=Be'&" for
n=1, . . . , N. (N= 1: lines; N=2: squares; N=3:
hexagons or triangles; etc.) Then, that solution with the
lowest corresponding free energy [12]

FIG. 2. Photographs (a)—(c) of nonlinear structures as ob-
served in the T, /H, region of Fig. 1. For the sake of com-
parison computer-generated density plots are given for ideal
surface patterns ((x, y) = cos(ki r)+cos(k2 r)+cos(k3.r+C ),
where [k, [

= A: and ki+k2+k3 = 0. C = 0 produces hexagons
(g), C vr/4 triangles (h), and C = vr/2 regular triangles (i).
The associated video images calculated by considering the ex-
perimental visualization technique are shown in (d)—(f).

N —1

Fm= ———) P(m —
)

m=o

is the most preferred structure. The other patterns are ei-
ther metastable (less deep local minima of F) or unstable
(local maxima of F). The dashed curve in Fig. 3 shows a
typical coupling function favoring square structures [13]
(since F2 & F~ for all N). By slightly broadening the
minimum of P(8) one gets Fs & F~ (solid line in Fig. 3)
and patterns with N = 3 become the most stable ones.

3288



VOLUME 71, NUMBER 20 PHYSICAL REVIEW LETTERS 15 NOVEMBER 1993

2-
I

I
I

1.5- RT

RT

0 I

0 vt/3

I

2'/3

FIG. 3. Typical shape of a coupling function (dashed line)
which minimizes the free energy (5) for square patterns, i.e. ,

for N = 2. A slight broadening of the minimum (solid
line) makes structures with N = 3 (hexagons or trian-
gles) most stable. The functions /3(8) are discontinuous at
8 = O, m. The curves P(8) = 1/4+ 7/4cos 8 (dashed) and
P(8) = 1/4+ 1/4cos 8+ 3/2cos 8 (solid) have been taken
for demonstration purposes, and do not result from a strict
derivation of Eq. (4).

This transition should occur in Fig. 1 at the border be-
tween the areas 8, and T, /H, .

The cubic mechanism in Eq. (4) with positive P(8) sat-
urates the mode amplitude R at O(ei/ ), but the phases
P„remain degenerate: Introducing A„=Re'~" into Eq.
(4) yields

A4n =0 for n = 1, . . . , N,

which gives N vanishing stability eigenvalues. Two
of them are related to translations of the whole pat-
tern in the horizontal directions while the remaining
ones describe neutrally stable "phasons. " In the case
N = 3 (triangles/hexagons) this phason is conveniently
parametrized by the (translationally invariant) combina-
tion

C' = 4i + 42+ 4s (7)

O, C = 3pR'sin(2C) . (8)

The fixed points of (8) are 4 = mar/2 (m integer) corre-
sponding to either hexagons (m even) or regular triangles

By varying 4 the pattern changes continuously from
hexagons (C = 0, 7r) to regular triangles (C' = vr/2, 3x/2)
[see Pigs. 2(g) —2(i)]. Structures with intermediate values
of C are called triangles as opposed to regular triangles
[7]. Generically the continuous symmetry degeneracy,
which makes hexagons, triangles, and regular triangles
equally stable, is lifted as soon as quintic contributions
to Eq. (4) are considered [7]. Among the fifth-order terms
compatible with the symmetries of the problem there is
only one, A"„(A"+i)2(A" +2) (use A" = A s if m & 3),
which affects the dynamics of C. Adding it (with a pref-
actor —p, say) to the right-hand side of (4) leads to the
phase equation

(m odd). The former (latter) are stable if p ( 0 (p & 0).
Just above threshold the right-hand side of Eq. (8) is very
small [R = O(e )], in particular close to the hexagon-
triangle transition, where p = p(r, &p) goes through 0.
This is the reason why the phason dynamics in the H, /T,
region of Fig. 1 becomes extremely slow or even indiKer-
ent, rendering a systematic separation between the H,
and T, domain impossible.

The cubic-quintic mechanism with positive P(8) pre-
dicts supercritical bifurcations to S„H„andT, . This
is in accordance to the experiment, where all subhar-
monic bifurcations appear without a measurable hystere-
sis. The harmonically responding hexagons Hh, however,
bifurcate slightly subcritically. Here, the responsible sta-
bilization mechanism is more familiar: It is the same
which generates hexagons by interacting quadratic and
cubic nonlinearities in the amplitude equations (e.g. , in
non-Boussinesq convection). Since the harmonic symme-
try does not impose a restricting resonance condition,
even powers of A may appear in Eq. (4). Denoting by o;

the prefactor of a quadratic term in Eq. (4), the lowest
order phase equation for the harmonic response reads

BgC = —3nRsinC . (9)

Equation (9) fixes C at either 0 or a, while stationary
"triangular" solutions never exist. In the harmonic r-y
parameter region, where n goes through 0, the Hh pat-
tern ceases to exist and supercritical Sh, appear instead
(between the dashed lines in Pig. 1).

The Faraday experiment with multifrequency forcing
provides the possibility of operating the cubic-quintic and
the quadratic-cubic stabilization mechanisms in the sub-
harmonic regime. Then, the dynamics of C can be inHu-

enced externally and controlled transitions between tri-
angles and hexagons are possible. To do so, we add a
small perturbation icos(wt + Q) to the excitation (1),
which generates even frequency contributions e' "~~ in

n/(27 ii~ )

FIG. 4. Bifurcation and stability diagram for C resulting
from Eq. (10) with p & 0. The values C' = 0, 7r (C = +7r/2)
correspond to hexagons H (regular triangles RT), while inter-
mediate values refer to triangular patterns (dashed=unstable,
solid=stable) .
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FEG. 5. Snapshot of a transient space dependent phason
state. A wall of hexagons separates to areas of triangles. The
picture has been taken from a cylindrical plastic container
of 120 mm inner diameter with a mirror on the bottom to
improve pattern visualization.

the response (3). Consequently, the subharmonic sym-
metry F(t + vriw) = —F(t) is slightly broken and small
even-order nonlinearities occur in (4). Neglecting quartic
terms against quadratic ones the resulting phase equation
becomes

oleic = 3R[pR sin(2C) —nsin C], (10)

where n = O(p). Figure 4 summarizes the bifurcation
and stability behavior of the phase 4, which turns out to
depend on the parameter combination cr/2pRs. Starting
from a stable regular T, pattern (i.e. , p ) 0) at p = cr = 0
one can continuously change to H, by tuning cr (via p, ) or
R (via e). The patterns shown in Figs. 2(a)—2(c) (and any
other for intermediate values of C') can be stabilized that
way. More interesting phason dynamics can be achieved
by changing periodically or randomly the sign of p, , or by
modulating the phase g: As an example Fig. 5 shows a
snapshot of a pattern with a transient space dependent
phason state consisting of a H, wall separating two areas
of T, .

The present Letter reports a hydrodynamic system,
which exhibits a stable periodic pattern of equilateral
triangles. Using symmetry arguments the experiment is
explained in terms of a three-mode amplitude equation
model. In contrast to the stabilization mechanism which
involves quadratic terms (giving, e.g. , weakly hysteretic
hexagons in non-Boussinesq convection), the appearance
of supercritical triangular patterns is associated with the
interplay between cubic and quintic nonlinearities. By
using both stabilization mechanisms simultaneously, con-
trolled transitions between hexagons and triangles can be
enforced.
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