VOLUME 71, NUMBER 20

PHYSICAL REVIEW LETTERS

15 NOVEMBER 1993

From Solitary Waves to Static Patterns via Spatiotemporal Intermittency
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Among the very rich range of possibilities for the dynamics of one dimensional fronts, this article
presents, in a film draining experiment, the first observation of a continuous transition from solitary
waves to a static spatially periodic pattern. Between these two extreme situations, a regime of colliding
solitary waves exhibiting chaos with spatiotemporal intermittency is observed. These observations sug-
gest the description of the static periodic pattern as being the result of a dense packing of propagating
solitary waves, and its destabilization to spatiotemporal intermittency as the attempt of some solitary

waves to propagate.

PACS numbers: 47.52.4j, 47.20.Ma

The dynamics of one dimensional fronts has been wide-
ly investigated in many different systems, both experi-
mentally and theoretically. A very rich range of possibili-
ties exists: Deformations which can be static, oscillating
or propagating, localized or extended, ordered or disor-
dered, have been observed [1-5]. However, most of the
descriptions are based on an ordered periodic deformation
(with some possible defects), or on separated localized
solutions. A link can be made between these two cases
when some solitary waves propagating in the same direc-
tion are added together to form a periodic propagating
pattern, as observed in the printer instability [6,7]. We
report here the first observation, to our knowledge, of a
continuous transition from localized propagating solitary
waves to a static and spatially periodic pattern.

The experimental setup consists of a horizontal glass
cylinder, which can be rotated around its axis at a vari-
able speed w in the range 0-20 rad/s. The cylinder, of
length 56 cm and radius 5 cm, is closed at its extremities
and partially filled with a viscous fluid. A large variety of
dynamical regimes can be observed depending on the
fluid volume used, its viscosity and, of course, the rotation
velocity [8-11]. We used an oil having a viscosity v=0.2
cm?/s (Rhodorsil 47V20). The behavior we describe was
observed with a fixed volume of oil, ¥ =135 cm?, corre-
sponding to a filling fraction of 3.1%. We will briefly de-
scribe later the behaviors for different volumes of oil.

For a small rotation rate, a part of the oil is dragged by
viscosity, forming a thin film (of typical thickness 2 mm)
covering the inner surface of the cylinder. The rest of the
oil is also dragged by viscous friction, but the gravity gen-
erates a compensating downward flow. This part of the
oil thus remains at the bottom of the upward moving
wall. As shown in Fig. 1(a), this thicker region has a
well defined front where the down-moving oil meets the
thin reentering film [12]. For a small rotation rate, this
front is perfectly horizontal (except close to the two
boundaries), and is stable. For a large rotation rate, all
the oil is dragged so that only the continuous film remains
[13]. The interesting behaviors are observed between
these two extremes.
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In order to analyze the spatiotemporal behaviors we
used a space-time reconstruction using a video recording
of the front [6]. It consists of taking the same horizontal
line in successive video frames and putting them one un-
der the other. The line in the frame is chosen just above
the flat front, so that each deformation is visible as a dark
segment. By convention, time proceeds downwards.

Above a threshold value of the cylinder rotation veloci-
ty, w, =11.06 rad/s, the straight front becomes unstable
and forms solitary waves [cf. Fig. 1(b)]. They have a
well-selected propagation velocity, amplitude, and shape.
This shape is asymmetrical, in direct relation with the
direction of propagation [14]. This instability is subcriti-
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FIG. 1. (a) Sketch of the experiment. A cylinder is rotated
horizontally around its axis at a radial velocity w. It is partially
filled with some oil forming a thin and continuous film, with a
thicker part at the bottom of the cylinder. The front between
the thicker part and the reentering film is unstable. (b)-(d)
Photographs showing the front for three different rotation rates.
(b) Solitary wave propagating to the right with its counter-
propagating wave, visible as an oscillation of its back [see Fig.
3(a) and text]l, w=11.1 rad/s. (c) Chaotic state with still some
flat regions, @ = 11.6 rad/s. (d) The final periodic and static
pattern, = 13 rad/s. Horizontal length is 26 cm for (b) and
(c), 55 cm for (d).
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FIG. 2. At small rotation rates, subcritical solitary waves are
observed. The full line shows their stable amplitude as a func-
tion of the rotation rate. During transients, one can measure
the unstable stationary amplitude, below which the wave dies
and above which it grows (dashed line). When growing, these
waves reach a maximum amplitude (dotted line), which finally
decreases to the stable amplitude as they emit the backward
wave. At large rotation rates, a nearly static pattern is ob-
served. The squares now show the stable amplitude of this pat-
tern, while the dotted line shows the amplitude above which a
cusp breaks in two, increasing the wave number, while the
dashed line shows the amplitude below which one cusp disap-
pears and above which it increases again.

cal (cf. Fig. 2). The solitary waves are spontaneously
created at the two lateral boundaries. At each closing
wall, a “finger” of oil oscillates vertically and thus gen-
erates a propagating wave. Generally this wave is strong-
ly damped (in less than five wavelengths). But when a
maximum of this wave exceeds a critical height, it is lo-
cally amplified into a solitary wave [cf. Fig. 3(a)l. The
formation mechanism of these solitary waves could be re-
lated to the fact that the front disappears when the rota-
tion rate is increased (or also for the same rotation rate
but a smaller oil volume). Close to this transition, the
system prefers to vary its local volume of oil, so that one
part presents a vanishing front with less oil, and another
part a more stable front with more oil [12]. A solitary
wave as in Fig. 1(a) does correspond to a local modula-
tion of the oil volume, with a larger amount of oil (the
protruding part) followed by a smaller amount (the cusp)
[15].

Two characteristics are important to understand the
dynamics of these solitary waves:

Slightly above the threshold (w = 1.02w,), the cusp of
a solitary wave starts to oscillate and to emit a wave,
which is strongly damped. It propagates with nearly the
same velocity as the solitary wave, but in the opposite
direction (in the reference frame of the laboratory) [cf.
Fig. 1(b)]. Far above the threshold, the backward wave
becomes large enough to generate spontaneously new
counterpropagating solitary waves (cf. Fig. 4).

Two solitary waves repel each other strongly when
closer than a distance of approximately their own size.
When the waves propagate in the same direction this
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FIG. 3. Space-time reconstruction showing the behavior of
the front for several rotation rates. Time is pointing down. (a)
o == 11.1 rad/s; the backward wave is responsible for the cogged

aspect of the solitary waves traces. (b) w=11.7 rad/s. (c)
w==12.3 rad/s; some coherent bouncing oscillations between
several solitary waves are visible. (d) w==12.9 rad/s < w;. The
width of each image corresponds to the whole length of the
cylinder (56 cm). The vertical time scale is constant, giving a
total length of = 32 s for (b)-(d).

repulsion determines their minimum distance.

These two characteristics are involved in the collision
of two contrapropagating solitary waves, a process essen-
tial for the front dynamics. During a collision, the two
solitary waves, due to their repulsion, slow down, stop,
and vanish without interpenetrating each other. But the
overall result of the collision depends on their backward
waves. They are amplified by the collision and, if one of
these reaches a critical amplitude, it is transformed into a
new solitary wave. Several results of a collision are thus
possible, depending on the amplitudes of the solitary
waves and the associated backward waves: Zero, one, or
two solitary waves can be regenerated [cf. Fig. 3(a)]. At
large rotation rates, the collision always leads to the re-
generation of two solitary waves.

Close to the threshold, a few solitary waves can be ob-
served from time to time [cf. Fig. 3(a)l. By increasing
the rotation rate, their number increases. The front also
starts to present a complex chaotic shape where no partic-
ular structure can be distinguished by direct inspection
[cf. Fig. 1(c)]. With the spacetime reconstruction, this
chaotic state is directly analyzed as resulting from the
dynamics of many solitary waves: It is a regime of per-
petually colliding, disappearing, and reappearing solitary
waves [cf. Fig. 3(b)]. For a still larger rotation rate,
some regions become static for a finite time [cf. Fig.
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FIG. 4. Transient observed when the rotation rate is in-
creased suddenly from a value just under the threshold w, to
w==12.5 rad/s, showing the propagation of two solitary waves
at a large velocity (2.17 cm/s). Same scales as Fig. 3.

3(c)]. They are formed of regularly spaced “fingers” of
oil, each being separated from its neighbor by a cusp
[16]. By increasing the rotation rate, the spatial and
temporal extensions of these regions increase. A station-
ary spatiotemporal intermittent regime of coexisting stat-
ic and chaotic regions is thus observed.

Finally, when the rotation rate is increased above a
second threshold, w; =12.98 rad/s, the whole front forms
a perfectly static and periodic pattern [cf. Fig. 1(d)]. As
stated above, if the rotation rate is even further increased
(in fact only slightly above w,), the front disappears and
there remains only a continuous and fluctuating film. Let
us add here that for a smaller oil volume (under V =120
cm?, filling fraction 2.7%), a long wavelength instability
first appears which perturbs the propagating solitary
waves, and the front disappears before reaching the sta-
tionary pattern. For a larger oil volume (above V = 150
cm?, filling fraction 3.4%), a subcritical transition toward
a stationary pattern is directly observed from the linear
front with no intermediate regime of solitary waves.

In our case, we observe that the transition from the
propagating solitary waves to the static pattern is con-
tinuous. 1If the state is characterized by the density of
disappearance of solitary waves (or equivalently the num-
ber of reappearances) in the space-time images, this
quantity vanishes approximately linearly at the transition.
The first consequence of the increased robustness of the
solitary waves is a more frequent generation of counter-
propagating ones and thus an increase of the number of
solitary waves (which saturates to the number of wave-
lengths in the final static pattern). But it also induces an
increase of the collision duration. As the collisions are
more and more likely, and as their mutual repulsion is
strong enough to forbid interpenetrating, this results in a

global slowing down of all the solitary waves (cf. Fig. 3).
Finally, at large rotation rates, a local equilibrium is
reached where they remain motionless (each cusp of the
static pattern corresponding to an immobilized solitary
wave).

This interpretation is strengthened by the fact that,
even for these large rotation rates, the free propagation of
solitary waves can still be observed during transients (cf.
Fig. 4). If the rotation rate is suddenly increased from a
value below the first threshold w, to a larger final value,
the propagation of a solitary wave coming from each
boundary is observed. Using such transients, we were
able to measure the propagation velocity of a free solitary
wave for any rotation rate. This velocity decreases regu-
larly with increasing rotation rate. But it remains high,
even for the rotation rate where a static pattern is ob-
served: Its value is 2.02 cm/s only 20% lower than the
value at threshold, 2.62 cm/s. Thus the formation of a
static pattern from a collection of solitary waves cannot
be explained simply by a vanishing propagation velocity
of the solitary waves. It is explained only by the mutual
repulsion of these solitary waves leading to their blocking.

As stated above, the system presents an intermittent
spatiotemporal behavior just below the second threshold
w,: some parts of the pattern are already static, while
other parts are still showing chaotic behavior. Figure
3(d) shows that the interaction between the chaotic and
the static regions is complex, with invasion, propagation,
and restabilization. This situation recalls the dynamics
observed in other systems [7,17]. For a value just above
w;, the transition to a static pattern is rather brutal, with
the sudden stabilization of the last chaotic region. The
destabilization of the static pattern when the rotation rate
is reduced is symmetrical: A part of the pattern suddenly
breaks into chaos. This destabilization is first observed as
a variation in the local amplitude, one cusp becoming
large and its neighbor becoming small. When the small
cusp disappears, the large one starts to propagate in the
empty place and generates another cusp (cf. Fig. 2). This
dynamic is identical to that of a solitary wave generating
a counterpropagating one.

From our point of view, the main interest of this exper-
iment is thus to suggest the description of some static
periodic patterns as a dense packing of propagating soli-
tary waves immobilized by their mutual repulsion. Their
destabilization to spatiotemporal intermittency is then
naturally interpreted as resulting from the attempt of
each solitary wave to propagate whenever the local equi-
librium is broken. We are confident that the general idea
of considering some periodic patterns, not as a whole but
constituted of a packing of localized structures, could
help to understand some of their particular dynamics.
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FIG. 3. Space-time reconstruction showing the behavior of
the front for several rotation rates. Time is pointing down. (a)
w==11.1 rad/s; the backward wave is responsible for the cogged
aspect of the solitary waves traces. (b) w=11.7 rad/s. (c)
w==12.3 rad/s; some coherent bouncing oscillations between
several solitary waves are visible. (d) w=12.9 rad/s < w,. The
width of each image corresponds to the whole length of the
cylinder (56 cm). The vertical time scale is constant, giving a
total length of = 32 s for (b)-(d).



FIG. 4. Transient observed when the rotation rate is in-
creased suddenly from a value just under the threshold w, to
w==12.5 rad/s, showing the propagation of two solitary waves
at a large velocity (2.17 cm/s). Same scales as Fig. 3.



