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String Theory Formulation of the Three-Dimensional Black Hole
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A black hole solution to three-dimensional general relativity with a negative cosmological constant has
recently been found. We show that a slight modification of this solution yields an exact solution to string
theory. This black hole is equivalent (under duality) to the previously discussed three-dimensional black
string solution. Since the black string is asymptotically flat and the black hole is asymptotically anti-de
Sitter, this suggests that strings are not aAected by a negative cosmological constant in three dimensions.

PACS numbers: 11.17,+y, 04.20.Jb, 97.60,Lf

In a recent paper [1], Banados et al. showed that there
is a black hole solution to three-dimensional general rela-
tivity with a negative cosmological constant. At first
sight this is surprising, since the field equation for this
theory requires that, locally, the curvature is constant.
However, they showed that by identifying certain points
of three-dimensional anti-de Sitter space, one obtains a
solution with almost all of the usual features of a black
hole. In fact, there is a two-parameter family of in-
equivalent identifications leading to black holes with mass
M and angular momentum J. Even though the curvature
is constant, the solutions have trapped surfaces, an event
horizon, and nonzero Hawking temperature. When J&0,
they also have an ergosphere, and inner horizon. The
solutions all approach anti-de Sitter space (without
identifications) asymptotically.

This solution is easily modified to obtain an exact solu-
tion to string theory. One simply adds an antisymmetric
tensor field Hp p proportional to the volume form E'p p.
The reason is the following. There is a well known con-
struction (the Wess-Zumino-Witten model) for obtaining
a conformal field theory describing string propagation on
a Lie group. The natural metric on the group SL(2,R)
is precisely the three-dimensional anti-de Sitter metric.
So the Wess-Zumino-Witten (WZW) model based on
SL(2,R) is an exact conformal field theory describing
string propagation on anti-de Sitter space [2]. The H„,~
field is required by the Wess-Zumino term and must be
chosen so that the connection with torsion H„,~ is Aat. To
obtain the black hole, one applies the orbifold procedure
[3] to obtain a conformal field theory describing string
propagation on the quotient space.

This solution is of interest for several reasons. An ex-
act four-dimensional black hole in string theory has not
yet been found. A few years ago, Witten showed [4] that
an exact two-dimensional black hole could be obtained by
gauging a one-dimensional subgroup of SL(2,R). The
three-dimensional black hole has a number of advantages
over the two-dimensional one. First, strings in three di-
mensions resemble higher-dimensional solutions in that
there are an infinite number of propagating modes. One
can thus examine their eAect on Hawking evaporation.

Second, the construction is even simpler than the two-
dimensional black hole. One merely quotients by a
discrete subgroup rather than gauging a continuous one.
In three dimensions, there will presumably be a tachyon,
which can be removed by considering the supersymmetric
WZW model.

One of the most interesting properties of string theory
is that diAerent spacetime geometries can correspond to
equivalent classical solutions. We will show that the
three-dimensional black hole is equivalent to the charged
black string solution discussed earlier [5]. Some implica-
tions of this equivalence for spacetime singularities and
the cosmological constant problem will be considered.

We begin by reviewing the black hole solution dis-
covered by Banados et al. [I]. (See also [6].) Anti-de
Sitter space can be represented

ds = I — dt + —
1

/2 j'2
dr +r dp

2 J2+ ' -M+'
j'2 4r 2

dr (3)

where t and p take any real value. If we identify
p=p+2tr, (1) describes a black hole. The surfaces of
constant t and r" & l are now compact trapped surfaces.
One could also identify p with a period other than 2z. It
turns out that this corresponds to changing the mass of
the black hole. This is analogous to the fact that in the
absence of a cosmological constant, the mass (in three di-
mensions) is related to the deficit angle at infinity [7]. To
add angular momentum, one periodically identifies a
linear combination of j and t, rather than ja itself.

To be more explicit, choose two constants r+, r — and
introduce new coordinates

t" = (r+t/I) —r
j =(r+p/I) —(r t/I ), (2)
r"'=I'(r' —r' )/(r' r' ). —-

Then the metric (I) becomes [I]
2

ds = M — dt —Jdt dg+r dp
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where the constants M and J are related to r ~ by
r+2 + r 2 2r+r-M=, J= i4i

(2 ' l
Identifying p with p+2x yields a two-parameter family
of black holes. By paying careful attention to the surface
terms in a Hamiltonian analysis [I], one finds that M is
the mass and J is the angular momentum of the solution.
In general, there are two horizons where V„r becomes
null, which are located at r =r ~. These two horizons
coincide when

~
J

~
=Ml, which is the extremal limit.

Anti-de Sitter space in its usual form is recovered when

M = —I and J=O. The Killing vector 8/Bt becomes null

at r =Ml, which lies outside the event horizon r =r+
when J~O. This is similar to the ergosphere in the Kerr
solution. Physically, it means that an observer cannot
remain at rest with respect to infinity when she is close to
the horizon.

What is the spacetime like near r =0? Since the cur-
vature is constant, R„,= —(2/l )g„„ there cannot be a
curvature singularity. When J=O and M & 0, the p
translation symmetry has a fixed point. This causes the
solution, near r=0, to resemble the Taub-NUT solution
and have incomplete null geodesics. However, when

J~O, the symmetry has no fixed points and the spacetime
is completely nonsingular. This is consistent with the
singularity theorems [8] even though the spacetime has

trapped surfaces and satisfies the strong energy condition,
because there are closed timelike curves. (The continua-
tion past r =0 consists of r becoming negative, so p be-
comes timelike. ) Banados et al. argue that one should
end the spacetime at r =0, which avoids the causality
problem but creates incomplete geodesics. However, this
appears very unnatural. The four-dimensional Kerr solu-
tion also has closed timelike curves inside the inner hor-
izon. (Although the vector tl/6p is timelike only for r & 0
in Kerr, there are closed timelike curves through every
point with r & r —. It is likely that a similar result holds
here. ) The closed timelike curves are not expected to
produce a physical violation of causality because of the
instability of the inner horizon. String theory provides
another reason for not ending the spacetime at r =0. The
WZW construction clearly includes all regions of the
spacetime, including r & 0.

The Hawking temperature for this black hole is

T = (r+ —r )/2trr ~l (5)
(The factor of l was omitted in [1].) One can show that
this implies that the black hole does not evaporate com-
pletely in finite time. This will be discussed elsewhere.

We now turn to string theory. Vv'e first consider these
black holes in the context of the low energy approxima-
tion, and then consider the exact conformal field theory.
In three dimensions, the low energy string action is

5= d xd —ge ~ —+R+4(V&) — H „H""~4 1

k P P

The equations of motion which follow from this action
are

R„,+2V„V„Q—
4 H„g H„=O,

V"(e ~H„„p) =0,
(7a)

(7b)

(7c)4V p
—4(VQ) +—+R—

k
A special property of three dimensions is that H„,~ must
be proportional to the volume form t.„,~. If we assume

& =0, then (7b) yields H„„~=(2/l)e„„~, where l is a con-
stant with dimensions of length. Substituting this form of
H into (7a) yields R„„=—(2/l )g„„which is exactly
Einstein s equation with a negative cosmological constant.
The dilaton equation (7c) will also be satisfied provided
k =l . Thus every solution to three-dimensional general
relativity with negative cosmological constant is a solu-
tion to low energy string theory with p =0, H„,~
=(2/l)e„„~, and k =l . In particular, the two-parameter
family of black holes (3) is a solution with

8« =r /l, y=0,
where H=dB. An earlier argument [9] claiming that
three-dimensional black hole solutions to (7) do not exist
assumed that H„„~=0 [10].

We now consider the dual of this solution. Duality is a
well known symmetry of string theory that maps any
solution of the low energy string equations (7) with a
translational symmetry to another solution. (Under cer-
tain conditions, the two solutions correspond to equivalent
conformal field theories [11,12].) Given a solution (g„„,
B„„p)that is independent of one coordinate, say x, then

(g„„,B„„,Q) is also a solution where [13]

g..=i/g" g..=B-/g.
gap =gap (gxagxp BxaBxp)/gxx ~

Bxa =gxa/gxx~ Bap =Bap 2gxlaBplx/gxx ~

p=p —
z lng„, ,

(9)

2 J 2

+ ' -M+
l 4r

dr (10)

8« = —J/2r, p = —lnr .

To better understand this solution, we diagonalize the
metric. Let

t=,p=, r =lr. (11)l(x —t") r~t —r -x
( 2 2 )I/2' (r2 2 )//2'

Then the solution becomes
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and a, P run over all directions except x.
Applying this transformation to the p translational

symmetry of the black hole solution (3) and (8) yields
r

ds = M — dt + —dtdp+ dp
J 2

1

4r l r2
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ds = —
1
— dt + 1—

r"

26
At, r"

Q2

At, r"

I 2dr" 2

4r"
(12)

ds = —dt +
1

2 2+ I 2

1+ dr + dP, (15)
l2 r21

P = —
2 lnr"l, 8„-;=6/r",

where Al, =r+/l and 6=J/2. This is precisely the previ-

ously studied three-dimensional charged black string
solution [5]. Notice that the charge of the black string is

proportional to the angular momentum of the black hole.
The horizons of the black string are at the same location
as the black hole r =r -+. Since p is periodic, both t and
x will in general be periodic. To avoid closed timelike
curves, one must go to the covering space.

Since the dual of the black hole is the black string, it
must be possible to dualize the black string and recover
the black hole. This is a little puzzling since it has been
shown [14] that if you dualize (12) on x, you obtain a
boosted uncharged black string. The charge 6 is dual to
the momentum in the symmetry direction P„-. However,
one can apply duality to any translational symmetry
r)/Bx+a8/Bt. If a & 1, then the dual is again a charged
black string. If a=1 the result is diAerent. The Killing
vector |I/|lx+ 8/8t has norm (JR —6 )/JRr", so it is

spacelike everywhere but asymptotically null. One can
easily verify that the dual of the black string (12) with

respect to this symmetry is precisely the three-dimen-
sional black hole.

We now consider a few special cases. The dual of the
nonrotating black hole, J=O and M & 0, is the uncharged
black string. This is simply the two-dimensional black
hole cross 5'. For the zero mass solution (M=J=O)
and the extremal limit (~J~ =Ml) the dual is still given

by (10), but the transformation to the black string breaks
down. The duals are not the zero mass and extremal
black string, but rather these solutions superposed with a
plane fronted wave. Setting M= J=O in (10), and intro-
ducing new coordinates t = —v, p =ul/2, r =e't', yields

ds2= —du dv+dr" 2+
4 /2e " 'du (13)

This is a plane fronted wave in the presence of a dilaton
[14]. Setting J =M I in (10), and introducing new
coordinates t = —v/M, &p=1(v+Mu)/2, r =lr", the met-
ric becomes

r

ds = —
1 —— — dQ dv+ + dB

MII' l dr" Ml
2r" 4(r —MI/2) '

(14)
This describes a wave of constant amplitude traveling
along an extremal black string [15]. Finally, recall that
the full anti-de Sitter space corresponds to J=O and
M= —l. Inserting these values into (10) and setting
t =t+p/l yields

which is the product of time and the dual of the two-
dimensional Euclidean black hole.

We now turn to the exact conformal field theory
description of the black hole. As mentioned earlier, this
is in terms of the SL(2,R) WZW model at level k. For
the noncompact group SL(2,R), k is not required to be
an integer. The central charge is c =3k/(k —2), so
c =26 when k =52/23. One can also consider larger
values of k and take the product of this black hole with

an internal conformal field theory. In terms of the group,
translations of p in (1) correspond to the axial symmetry

1 0 1 0
0 1

g+g P

while translations of t correspond to the vector symmetry

(16)

1 0 1 0
O —1 g g O —

1
(17)

The general black hole is obtained by quotienting under a
discrete subgroup of a linear combination of these sym-
metries. This can be carried out by the standard orbifold
construction [3].

There is a close connection between the two- and
three-dimensional black holes in string theory. Witten
has shown [4] that the two-dimensional black hole can be
obtained by starting with the SL(2,R) WZW model and

gauging the axial symmetry (16). If one gauges the vec-
tor symmetry, one obtains the dual of the black hole,
which turns out to have the same geometry. One cannot
gauge a general linear combination of the symmetries be-
cause of an anomaly.

Rocek and Verlinde have shown [11] that for a positive
definite target space having a spacelike symmetry with
compact orbits, the low energy duality (9) corresponds to
an equivalence between exact conformal field theories.
For Lorentzian target spaces, equivalence has not yet
been rigorously established. In addition to the obvious
di%culty of convergence of the functional integral, there
are other issues involving potential closed timelike curves.
Nevertheless, since the equivalence does not explicitly de-
pend on the signature of the target space, one expects it
to hold in this case also. The eAect of duality on a WZW
model has been investigated [11,16]. If one dualizes with

respect to an axial or vector symmetry, the result (after a
simple shift of coordinate) is just the product of U(1) and
the WZW model with this symmetry gauged [11]. This
explains why the dual of the nonrotating black hole is just
the product of the two-dimensional black hole and U(l).
It also explains why the dual of anti-de Sitter is the prod-
uct of time and the dual of the Euclidean black hole.
However, we have seen that the dual of the general rotat-
ing black hole is the charged black string which is not a
simple product. The exact conformal field theory associ-
ated with this solution is also known [5]. One starts with
the group SL(2,R) x U(1) and gauges the axial symmetry
(16) of SL(2,R) together with rotations of U(1).

330



VOLUME 71, NUMBER 3 PH YSICAL REVIEW LETTERS 19 3Ur V 1993

Solutions to the low energy field equations cannot be
trusted in regions of large curvature. But since the
three-dimensional black hole has constant curvature
(which is small for large k), it should be a good approxi-
mation everywhere. In fact, for a WZW model, the exact
metric diA'ers from the low energy approximation only by
an overall rescaling [17,18]. So the exact three-dimen-
sional black hole metric is simply proportional to (3), and
(for Je0) is nonsingular (although the stability of the
inner horizon and the eA'ect of the closed timelike curves
remain to be investigated). A candidate for the exact
two-dimensional black hole metric has been found [17,
19,20]. It has recently been shown [21] that this metric
is also free of curvature singularities (although the dila-
ton diverges inside the event horizon). This can be
viewed as increasing evidence that exact black holes in

string theory do not have curvature singularities. But the
evidence is far from conclusive.

A candidate for the exact three-dimensional black
string metric has also been found [18,22], which does
have a curvature singularity. However, the fact that the
solution is equivalent to one without a curvature singular-
ity suggests that it may also correspond to a nonsingular
conformal field theory.

Perhaps the most remarkable consequence of the
equivalence between the black hole and black string
comes from the fact that the black hole is asymptotically
anti-de Sitter while the black string is asymptotically flat
(although the dilaton grows linearly at infinity). Since
they are equivalent, it suggests that a negative cosmologi-
cal constant has no eAect on strings in three dimensions.
The reason that the asymptotic structure of the spacetime
changes under duality is that the length of the circles
parametrized by p does not approach a constant at
infinity. This phenomenon has been noticed before, but
in previous examples the asymptotic behavior of the dual
space did not have a simple physical interpretation. For
example, consider four-dimensional Minkowski spacetime
ds = —dt +dr +r (dO +sin 19dp ). If we dualize on

p the metric is identical except that g~ is changed to
(r sin 0) ', which is singular along the axis 0=0, tr.

The three-dimensional black hole seems to be the first ex-
ample in which two diferent asymptotic behaviors each
have a simple physical interpretation.

This suggests a novel resolution of the cosmological
constant problem. Perhaps a solution with a cosmological
constant in string theory is equivalent to one without.
Strings may not be aflected by a cosmological constant.
Unfortunately, a straightforward generalization of our re-
sults to higher dimensions does not relate a solution with
a cosmological constant to one without. One can start
with the charged black string in D dimensions [23] which
is asymptotically flat, and dualize with respect to a sym-
metry that is spacelike but asymptotically null. The re-
sult is a metric which is neither asymptotically flat nor
asymptotically anti-de Sitter. However, given our ele-
mentary understanding of duality in string theory, one

cannot rule out the possibility that this eAect will play a
role in resolving the cosmological constant problem.
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