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Wavelet Transforms and Atmospheric Turbulence
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Wavelet cross spectra and cross scaLograms are used to analyze the time-scale structure of bivariate
turbulence data from the boundary layer over the ocean. The cross scalogram for the streamwise
and vertical turbulent velocity components shows a highly intermittent pattern with significant
contributions of opposite signs appearing at two specific scales, 60 m and 2 km, believed to be
related to small-scale turbulent mixing and large-scale secondary flow in the boundary layer.
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The purpose of this Letter is to bring to the attention
of the physics community a recent technique of time-scale
bivariate analysis, based on wavelet transforms, which we

apply to the study of atmospheric turbulence.
Fourier and correlation analysis techniques have tradi-

tionally provided spatial and temporal decompositions
of individual turbulence variables into scales averaged
over the data record. With the increasing popularity
of wavelet methods for the analysis of phenomena which
exhibit scaling behavior, including turbulence (see, e.g. ,

[1—5]), we compared the two methods.
We are specifically interested in the wavelet analysis

products of certain variables, because in the Reynolds-
averaged sense of turbulence the important transfer
terms (momentum, heat, and species) appear as aver-

aged products of the instantaneous velocity components,
temperature, and concentrations. These were usually
treated by Fourier cross-spectral and cross-correlation
techniques. We develop an equivalent wavelet eross-
spectrum technique, and compare it to the Fourier case.

Since the wavelet transform yields scale estimations
which are better than those of Fourier methods, we were
motivated to study the intermittency of the turbulent
fluxes by examining the time-scale representation of the
wavelet cross spectrum, which we call the wavelet cross
sea, logram. In atmospheric flows one cannot repeat the
experiment in the spirit of forming ensemble averages of
Fourier periodograms to obtain smoothed spectral ampli-
tudes. We were therefore interested in the relative merit
of wavelets for smoothing for a finite data segment.

These new techniques were applied to high Reynolds-
number data from the turbulent boundary layer over the
ocean. Both univariate data and bivariate data of ve-

locity components and temperature were analyzed. The
bivariate analysis was performed on the vertical and lon-
gitudinal wind components (momentum transfer), and
the vertical component with temperature (heat flux).

Further details of the work summarized here are con-
tained in the first author's thesis [6], where one can find

a more complete bibliography. A preliminary report was
presented at the Toulouse Wavelet Conference in 1992 [7].

Wavelet and Fouri er spectra: basic definitions. —A

function @ E I (lLz(R), whose Fourier transform iII sat-
isfies c@ = J iIJ(w)l lwl dw ( oo, is called an (admissi
hie) wavelet, The constant c@, which obviously depends
on the wavelet 4, is called the admissibility constant.

A wavelet 4 can be thought of as a bandpass filter
because its Fourier transform is mainly concentrated on
some frequency interval. A family of filters is defined in
terms of 4 by the operation of dilation or scaling. For
any s c lR, let iII, (t) = ~s] 4(st). The factor ~ls] keeps
the I norm of each filter independent of s. In most
of the existing literature on wavelets, the scale length
parameter a appears in the denominator, so that @ (t) =
1/glal iIJ (t/a), for a g 0. In the Fourier context, a is the
analog of wavelength. We use the variable s = 1/a, which
is analogous to the wave number and call it scale number.
We will allow s to take negative values, whereas a is
often assumed to be strictly positive. Since the Fourier
transform of iIJ, is equal to @,(u)) = 1/~~s~4 (w/s), the
parameter s linearly scales both the center frequency and
the width of the pass band.

If @ is an admissible wavelet, and f is square inte-
grable, then the wavelet transform WI(s, r) of f at time
~ and scale number s is defined by

WI(s, r) = f(t)CI, (t —r) dt

At each fixed scale s we get a version of f(t), bandpassed
by the filter 9, . To see this in the frequency domain, we
Fourier transform in r: WI(s, ~) = f(w)4, (—w).

The wavelet transform is norm preserving, but the
range space is L (lR ) since WI is a function of two
real variables. Formally, we have Parseval's relation for
wavelets: If f belongs to Lz(R),

ds dr lWf(s, r)l

In polarized form, if f and g belong to L (R), then

ds dr WI(s, r)Ws(s, r).

The inverse wavelet transform is (for almost all t)
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f(t) =— dsd~ Wf(s, ~)4,*(~ —t .

Pf"(s) = d~ iW, (s ~ '.
In polarized form for a pair of square mtegrab1e f

e wavelet cross spectrum is

Cf (s) = d~
Wf* (s, ~)Ws (s, ~) . (6)
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FIG. 2. Fourier (solid line) and wavelet (circles) energy
spectra of the streamwise horizontal velocity component u.
Also shown is the —5/3 slope corresponding to the Kol-
mogorov inertial subrange.

comparison over a wider range, the original data record
was re-sampled at 128 Hz, 8 Hz, 2 Hz, 1/2 Hz, and 1/8
Hz. For each new sample rate, 64 spectral estimates were
computed with both FFT and wavelet transforms. The
resulting spectra were pieced together on a logarithmic
scale covering approximately four decades.

The Fourier power spectrum of the streamwise horizon-
tal velocity component u and its wavelet equivalent are
shown in Fig. 2. The wavelet method seems to give a bet-
ter smoothed representation of the spectrum. More de-
tail is shown at low frequencies while retaining the overall
shape at higher frequencies. The power-law slope of —5/3
of the Kolmogorov inertial subrange is also shown, and
agrees with the data for frequencies from 0.1 to 10 Hz,
the limit of the anemometer.

The time-bandwidth product of the cubic-spline
wavelets is greater than that of the windowed sine func-
tions of the Fourier basis. This accounts for the increased
smoothness of the wavelet spectra. Generally, this prop-
erty would tend to obscure features which are sharply
localized in the frequency domain. However, the struc-
tures we have found here do not appear to be adversely
afFected by the smoothing. At the same time, the loga-
rithmic frequency spacing of the wavelet transform pro-
vides arbitrarily high resolution at low frequencies. To
obtain an equivalent resolution with a Fourier analysis,
one must either use very long FFT's, or decimate the data
by some large factor as we have done here. Either of these
lead to increased compute time for the FFT, whereas for
certain classes of wavelet transforms the "decimation" is
automatic, and comes for free.

We show two representative co-spectra in Fig. 3: that
of u x m (momentum flux) and w x T (heat flux), where
u, m are the streamwise and vertical components of the
velocity, respectively, and T is the temperature. In or-
der to show the variation in co-spectral "energy" as a
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FIG. 3. The u x m and m x t co-spectra. The solid line
shows the co-spectral estimate via Fourier analysis; the circles
represent the wavelet co-spectra. (Note: The co-spectra are
presented in area-preserving form on semilogarithmic scales. )

function of frequency, we use the method of plotting
the co-spectra in area-preserving form on semilogarith-
mic scales. Here the wavelet co-spectra resolve the bi-
modal feature of the momentum and heat fiuxes. The
momentum flux has negative values in a region centered
at about 60 m, while there is a positive region around 2
km. The opposite is true for the heat flux. The Fourier
co-spectra show a slight indication of the longer wave-
length mode.

Plotting the first moment of the wavelet cross trans-
form is also an efFective way to show the intermittency
in the two-dimensional contour plots —the cross scalo-
grams. To illustrate this, such a cross scalogram is shown
in Fig. 4. [6] The instantaneous product of the u and
m fluctuations is depicted as a time series at the top
of the graph. Below it is the wavelet cross transform
W„(s,~)W (s, ~). The vertical axis in the lower plot is
the scale number, so the small length scales appear at
the top. Positive regions are in shades of red, passing
from white, to pink, through deep red to black; nega-
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FIG. 4. Wavelet cross scalogram showing approximately 250 s of data. The upper half shows the time series of the instanta-
neous product u x m; the lower half is a color plot of its wavelet cross spectrum, as explained in the text. The relative spectral
levels are indicated by the color scale on the right. The time in the abscissa is common for both plots.

tive regions use shades of blue. The positive and nega-
tive extrema are both colored black, but are surrounded
by regions of red or blue, respectively. The dark blue
oval-shaped features to the left of center are the 60 m
structures, while the larger red and blue shapes below
them represent 2 km structures. The color plot displays
clearly the sign change in the spectra, corresponding to
Fig. 3. Notice the highly intermittent features, a char-
acteristic which is very difFicult (if not impracticable) to
analyze with Fourier transforms. To resolve either of
these structures with Fourier techniques, one would have
to know their size a priori, and set the length of the win-
dow function accordingly. But since the 60 m and 2 km
structures are so different in size, this cannot be accom-
plished simultaneously for both. In contrast, the wavelet
transform uses a dynamically adjustable "window, " and
is thus capable of resolving all scales simultaneously.

To explain the bimodal structure qualitatively, we note
that since the sea was slightly warmer than the air, one
can expect a net upward (positive) heat flux from the sea
to the air; similarly, the sea surface is a sink of horizon-
tal momentum of the wind, and one expects a downward
(negative) momentum (u x tv) flux. These qualitative
features are supported by the present results; the inte-
grals (areas) of the co-spectra are positive for tv x T and
negative for u x m. The co-spectral analysis breaks down
the integral (average) fluxes into various frequencies or
scales. From Fig. 3 we see that the main contributions to
the co-spectral "energies" are at scales that peak around
60 m. This scale corresponds to the surface-layer tur-
bulence scale, where most of the (positive) heat trans-
fer and (negative) momentum transfer are taking place.
Ho~ever, at large scales of about 2 km, transfers of op-
posite sign occur and represent upward momentum flux,
counter to the mean wind gradient. It is believed that
these are associated with the large-scale features of the
boundary layer, such as horizontal roll vortices. Over-
all (i.e. , integrated co-spectra), counter-gradient transfer
in turbulence is not new, but with the wavelet analysis
we have been able to detect both gradient and counter-
gradient transfer as a function of scale in the flow.

In conclusion, the analysis of turbulent fluxes shows
that wavelet cross-scalogram analysis can be extremely
useful in representing the time-scale structure of bivariate

data. When integrated over time, the wavelet method
provides a better view of the frequency-amplitude spectra
and co-spectra. In particular, low frequency variations
are well resolved, and in this case, a bimodal structure of
the averaged turbulent fluxes was revealed.

The intermittent localized features of the flux fields
are clearly shown in the wavelet cross-scalogram plots.
The method holds promise for examining the structure
of turbulence, and perhaps other random fields where
bivariate phenomena are also important.
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