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Multidimensional Solitons in Quadratic Nonlinear Media
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A new type of optical soliton is presented for two-wave interactions in quadratic nonlinear media. Un-
like the conventional soliton in cubic nonlinear media, the most unique feature of the present solitons is
found in the feasibility of multidimensional confinement. A compact analytical expression for the new
solitons with arbitrary transverse dimension is derived through the self-consistent-field approximation.
With available nonlinear materials in mind, a specific method for observing the multidimensional solitons
is investigated.

PACS numbers: 42.50.Rh, 02.60.Lj, 42.60.3f, 42.65.Jx

The concept of solitons has now become ubiquitous in

modern sciences, and indeed can be found in various
branches of physics [I]. In optics, the formation, propa-
gation, and detection of solitons are of topical interest,
not only in their curious phenomenology but in diverse
potential applications to long-haul communication and ul-
trafast signal-routing systems [2]. Algebraically, these
optical solitons are a particular solution of the (1+1)-
dimensional nonlinear Schrodinger equation (NLSE)
with cubic (third-order: g ) nonlinearity. Here the
symbol (D+ I) indicates the D-dimensional confinement
(D =1,2, 3) for the transverse axes with a single longitu-
dinal (propagation) axis. As is well known, there exist
two kinds of solitons in the (1+1)-dimensional NLSE:
bright and dark solitons [2]. In addition to the (I+ I)-
dimensional NLSE, analytical and numerical studies of
bright field solutions of the higher-dimensional (D» 2)
NLSE's have been made [3-5]. However, in contrast to
the canonical (1+1)-dimensional NLSE, no solitonic
solution has been found but only stationary solitary-wave
solutions, which have been found to be extremely unsta-
ble [5], have been obtained. This instability against fiuc-
tuations leads eventually to the blowup (the collapse) at
least in the framework of scalar wave theory. One may
notice that it is this unstable feature that prevents one
from taking advantage of the higher-dimensional light
beams as a means of signal transmissions. On the other
hand, in more recent years the multidimensional dark
beams in Kerr nonlinear media, such as the funda-
mental-dark-soliton crosses [6] and the optical-vortex sol-
itons [7], have been studied by Swartzlander and co-
workers. It should be noted here that, as suggested con-
cerning the macroscopic cascading of g nonlinearities
to obtain nonlinear phase shifts [8], the quadratic non-

linearity may be useful for forming solitons. I n this
Letter we present a novel type of optical (envelope) soli-
ton, taking advantage of mutual guiding assistance result-

ing from two-wave parametric interactions in quadratic
(second-order: g ) nonlinear media [9]. Unlike the con-
ventional soliton that is based upon the cubic (g ) non-
linearity, the most unique and fascinating feature of the
present g solitons lies in the feasibility of the multidi-

mensional confinement for all transverse axes. This could
result also in a stable light-bullet formation, which has
been impossible for pulsed beams propagating in a cubic
nonlinear medium because of its supercritical instability
[5,10]. A compact analytical expression for the new soli-
tons with arbitrary transverse dimension is derived with
the aid of self-consistent-field (Hartree-like) approxima-
tion. With available nonlinear optical materials in mind,
a specific method for observing the multidimensional soli-
tons is presented. It is found that the intensity threshold
can be lowered optionally by tuning the temperature.

We consider a phase-matched traveling-wave config-
uration of optical wave mixing between the fundamental
(co) and the second-harmonic (SH: 2co) frequency com-
ponents through the quadratic nonlinearity of a dielectric
medium. From Maxwell's and material equations with a
propagation factor, exp[in(pz —cot)] (n =1,2), being im-

plied, the coupled wave equations of the slowly varying
electric-field amplitudes, A(co) and A'(2co), along the
propagation axis z are derivable [4,11]:
—i28tJtA =p' c)~(p 'c)~A)+(e —8 )A+tcA*A',

(1a)

—i488tA'=p' c)~(p 'c)~A')+4(c' —8 )A'+ tc'A

(lb)

where j=koz (ko being the wave number of the funda-
mental wave in a vacuum); p=ktix for D= 1

( —~ & x & ~, with x being a transverse axis); p =kor
for D =2, 3 (0( r & ~, with r being the radial axis,
which includes both space and time for D =3); 8 =P/ko
(p being a phase constant along the z axis); e is the rela-
tive permittivity; K represents a relevant component d;~

(i =1,2, 3; j=1,2, . . . , 6) that is involved in the quadratic
nonlinear tensor [d]; and the asterisk denotes complex
conjugate. In this Letter the prime (no prime) indicates
the quantity relevant to the SH (the fundamental) fre-
quency component [e.g. , e =e(co), e' =e(2co)]. In the
derivation of Eq. (1) we have confined ourselves to the
nodeless, symmetric beam profile in a transparent medi-

um; eAects due to absorptions will be mentioned later.
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For dissipation-free systems the permutation symmetry
[41 requires that Lr=x.'.

First we concentrate our attention on the one-
dimensional confinement [D = I in Eq. (I)]. Imposing
the stationarity, t)~

——0, t)&——0, reduces Eq. (1) to

' D —
IQ OO P OO

f*'f'du „If I
'du, (8b)

Similarly, substituting Eq. (6) into Eq. (lb) and multi-

plying both sides by Q, „;f'*(x~), we obtain

d~ A + (e —8 )A + LrA *A ' =0,
d~A'+4(~' —8 )A'+Lr'A =0.

(2a)

(2b)

d, ,
f'+4(2 ' —8 )f'+2x.'f =0,

with

(9)

In an eftort to obtain an exact stationary solution, as an
ansatz we set

s'=~' ——,
' (D —I) Id„f'I du If'I du,

(ioa)
A (p) =Allsech'(ap),

A'(p) =A(') sech'(ap),

(3a)
f'*f'du „ If I

'du
' D —

1

(1ob)

where Ap, Ap, and a are unknown real parameters to be
determined below. On substitution of Eq. (3) into Eq.
(2), one obtains

Here one finds Eqs. (7) and (9) formally identical, re-

spectively, to Eqs. (2a) and (2b). Thus, as an explicit an-
satz one can set the one similar to Eq. (3),

g —g2+4O 2 =0

4(~' —8')+4a'=0,
&ApAp —6a Ap =0,
2&'A p

—6e A p =0

which can be solved for 8, Q, Ap, and Ap,

8=(.+ —,
' ~.) '~2,

a =( —,
' ae) '~2,

All = + [2/(Lrlr')] '~2We,

Ao =(2/L~)as,

(4a)

(4c)

(4d)

(sa)

(sb)

(sc)

f(x~ ) =f0 sech 2(ax) ),
f'(x, ) =fLI sech (ax~ ),

(I 1 a)

for j=1,2, . . . , D, where fo, fr'l, and a are unknown pa-
rameters to be determined in a self-consistent f'ashion.

As in Eq. (5) we obtain

8 =(e'+ —,
' A~) '~2,

Ao=+ [2/(rcLr')] l~2ae

A 0 = (2/x )Ae,

(12a)

(i 2b)

(12c)

(i2d)

with he=i' —e, Ao=fo, and Ao=fLI . Substitution of
Eq. (11) into Eqs. (8) and (10) leads to

with h, c—=e' —e.
Subsequently, we consider the general case with arbi-

trary dimension. Unlike the case of the one dimension
(D= 1), for arbitrary dimension, the exact analytical ap-
proach is unavailable. Below we shall obtain approxi-
mate stationary solution through the use of a self-
consistent-field (a Hartree-like) approach [12-14]. With
this method the first step is to assume an ansatz in the
form of a separation of variables,

a=a —-', (D —
1 )a',

~ =(4f,'/s) '-'~,
e'=e' —

—,
' (D —1)a',

K'=(4fll/sfo) 'Lr'.

From Eqs. (13a) and (13c), for D ( 6, we obtain

he = [5/(6 —D)]As.

(13a)

(13b)

(13c)

(i 3d)

(i 4)
A(xl, x2, . . . , xD) =f(xl)f(x2) f(xD),

(x l~x2~ ~ ~ ~ ~xD) f (xl)f (x2) f (xD) ~

(6a)

(6b)

d, , f+(e —8 )f+xf*f'=0, (7)

with a modified relative dielectric constant and nonlinear-
ity, respectively,

f+ OO f+ OO

„I d.f1 'du (8a)

where g~=lx~ =p .
Substituting Eq. (6) into Eq. ( I a) and multiplying

both sides of the resultant equation by Q~&; f*( ),xwe
obtain an integrodifferential equation, a = [s~~/[3(6 —D) ]I '",

A, =+- [2" ""'5 /(6 D)]~~//(«') '"—
Ao= [2 5 /(6 —D)]we/x .

(15b)

(isc)

(15d)

It is interesting to note that the phase constant 8 is in-
dependent of the confinement dimension. Kith the width
parameter a being evaluated by Eq. (15b), the intensity

Substituting Eqs. (13) and (14) into Eq. (12), we finally
arrive at the explicit analytical expression of the beam
parameters with arbitrary dimension D (D (6):

(isa)
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FIG. 1. Soliton shape parameters as a function of transverse
dimension. (a) Normalized spot size that is defined by
(Ae) ' ko FWHM and (b) normalized peak intensity that is
defined by [vv'/(he) ]A) for the fundamental component (co),
and by (a/Ac) Ao for the SH component (2'). The definition
of the symbols is given in the text.

FW H M can be calculated by the relation FW H M
=1.212/koa. For D= I, Eqs. (15b)-(15d) are reduced
to Eqs. (5b)-(5d), respectively. Typical shape parame-
ters of the self-consistent solitary-wave solution versus the
confinement dimension are plotted in Fig. 1. Although
the plots are connected with the dashed line, only the
three points for D=1, 2, and 3 are physically meaningful.
As expected from Eqs. (15b)-(15d), the spot size shrinks
gradually with increasing the confinement dimension,
~hereas the peak intensities at the beam center grow as
the dimension increases.

To verify that Eqs. (I) really have a solitonic solution,
and to check whether the self-consistent solution [Eq. (6)
with Eqs. (11) and (15)] is a good approximate solution
for the general multidimensional solitons, we have imple-
mented numerical stability analyses of the evolution
equations, Eq. (I), using an extended version of the itera-
tive finite-element method [15]. The validity of this
methodology was fully ensured through extensive applica-
tions to stability analyses of nonlinear guided waves in

Kerr-like media [15]. With this method, one first inputs
a stationary field into nonlinear wave equations, and
traces the subsequent variation of the input field during
interactions. If the input solution were stable, it would
converge eventually to the exact solitonic solution.
Through careful analyses we have arrived at the con-
firmation that at least for D=1, 2, and 3, the solitary-
wave solution we have derived above is stable against
propagation. (Similar calculations for the multidimen-
sional cubic NLSE showed instabilities, i.e., blowup, as
predicted analytically [5]). This verifies that Eqs. (I)
have a solitonic solution for D=1,2,3 and that the self-
consistent stationary solution is indeed satisfactory as an
approximate analytic form of the multidimensional soli-
tons. It should be noted here that this conclusion is con-
sistent with that presented previously by Rasmussen and
Rypdal [5], who discussed analytic properties of a single
NLSE with a general power-law non1inear term. In situ-
ations where the walk-oN' effect due to the group-ve1ocity
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I IG. 2. Temperature dependence of soliton beam parameters
(D =2, X =1.064 pm). (a) Intensity FWHM and (b) optical
power. The dashed line indicates the critical temperature,
t„=43.076'C, at which the permittivity detuning he between
the two spectra vanishes completely.

mismatch between the two components is negligible, the
three-dimensional soliton (D=3) will permit us to ob-
serve a stable light bullet, i.e., a spatiotemporal soliton,
which has been impossible for pulsed beams that propa-
gate in a cubic nonlinear medium [5,10]. Under the same
peak amplitude, comparison has been made between the
eigenvalue B of Eq. (15a) with Eq. (5a) and that ob-
tained through the numerical stability analysis with a
material given below being assumed (r =43.90'C). The
relative error of the approximate eigenvalue has been
found to be 3.5 x 10 for D =2, and 1.3 & 10 for
D=3, which indicates again that our self-consistent ap-
proach is justified.

Finally, the possibility of experimentally observing evi-
dence for the multidimensional solitons should be men-
tioned. As obvious from Eqs. (15c) and (15d), to reduce
the intensity threshold for forming the solitons one needs
to select a material that exhibits a smaller permittivity
difference between the two frequency components or
larger quadratic nonlinearity. Of some candidates we
have found nonlinear interaction through d3] in lithium
niobate (LiNb03) to be the best for this purpose. In this
configuration the fundamental wave is an ordinary (o)
wave, whereas the SH wave is an extraordinary (e) wave.
Taking advantage of the different temperature depen-
dence of the two refractive indices (n„n„) [16], one can
tune the magnitude of he in an arbitrary fashion. For
some typical wavelengths we have examined the variation
of Ac [=n, (2') —n, (cu)] on the temperature. Through
the examination we have found that for k = 1.064 pm
from a Nd: YAG (where YAG denotes yttrium aluminum
garnet) laser, at r,„—:43.076'C, the diITerence d, s van-
ishes completely. To examine the variation of soliton pa-
rameters in the vicinity of the critical temperature t,„ for
the two-dimensional solitons (D =2, X=1.064 pm), we
plot in Fig. 2 the intensity FW H M and the optical
powers. Here P (P') indicates the time-averaged power
of the fundamental (the SH) frequency component. The
vertical dashed line drawn in Fig. 2 indicates t =t„, and
all the material data are extracted from Ref. [16]. It
should be noted that only the upper-half region, t & t,„, is
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allowable, and the region, t & t,„, is forbidden because
therein As(0, which results, from Eq. (15b), in the
imaginary value of a. It is seen from Fig. 2(a) that the
spot size of the solitons decreases with increasing temper-
ature, but the rate gets smaller as the temperature in-
creases. The more interesting quantity to observe in the
multidimensional solitons is the optical powers that are
required to sustain these during propagation. From Fig.
2(b) we find that in the close vicinity of t„ the powers
grow exponentially with increasing temperature. With a
commercially available thermostat the temperature devia-
tion of 0.01-0.1'C would be achievable. For instance, at
43.09 'C, one finds from Fig. 2(b) P = 180 W and
P'=360 W, which can be realized with a currently avail-
able mode-locked technique. Surface damage would be
avoidable by adopting a pulsed-mode operation [16].
EAects due to linear absorption will be negligible with

propagation distance considerably shorter than the ab-
sorption length L, . For LiNb03, from the data available
[16], we estimate L, =12.5 cm for X=1.064 pm and
I,' =35 7 cm for X' =

2 k =0 532 p m. Both the two-
photon absorption (TPA) of extraordinary green light
(TPA coeI]tcient being 2.9X 10 cm/W [16]) and the
self-focusing eAect (Kerr coe%cient being 2.2 && 10
m jV [17]) can be ignored at least within the power
scale shown in Fig. 2(b).

In conclusion, we have found a novel type of optical
soliton which takes advantage of mutual guiding assis-
tance due to two-wave mixing in quadratic nonlinear
media. Unlike the conventional soliton based upon cubic
nonlinearity, the most unique and fascinating feature of
the new solitons has been found in the feasibility of the
multidimensional confinement for all transverse axes that
include both space and time.
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