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We study an ensemble of N bosonic atoms coupled by dipole-dipole interaction and also in-
teracting with an electromagnetic field. Effective single-atom nonlinear Schrodinger equations are
derived. The implications of these equations are discussed in the context of some standard atom op-
tics geometries, illustrating in particular how many-body eA'ects modify the Pendellosung of Bragg
scattering. In another regime, the problem is reduced to a classical massive Thirring model, with
the possibility of generating atomic Thirring solitons.

PACS numbers: 42.50.Vk

Atomic cooling has witnessed considerable progress
due to the realization that the standard recoil limit of
cooling can be circumvented by velocity-selective coher-
ent population trapping [1], and it is clear that nano-
kelvin and sub-nano-kelvin temperatures are now within
reach. The availability of such ultracold atoms opens up
exciting new avenues of research in atomic physics and
quantum optics. An obvious goal, actively pursued by
several experimental groups, is to achieve Bose conden-
sation of atoms [2]. However, there are a number of other
fascinating facets to the physics of cold atoms which can
best be put into perspective by mentioning just one num-
ber: The de Broglie wavelength Aga of an atom in the
100 K temperature range is of the order of a few microns,
that is, it is comparable to or larger than an optical wave-
length A.

This progress provides considerable impetus for study-
ing the optics of very cold atoms, especially when the
center-of-mass motion is quantized as is the case in atom
optics. Atoms interact directly via a number of mech-
anisms, the simplest one being the "exchange force" re-
sulting from quantum statistics. They are also subject
to "ultracold collisions, " which are unusual in that the
atomic de Broglie wavelength AgB can be much larger
than the scale of the interatomic potential. Indeed, ultra-
cold collision cross sections between ground state alkali
atoms can be as large as the resonant absorption cross
section of light A~/2~ [3,4].

In this Letter, we consider the many-body description
of an ensemble of N bosonic atoms coupled by dipole-
dipole interaction. The atoms also interact with an elec-
tromagnetic field, e.g. , a single standing-wave laser mode
acting as a diffraction grating for atoms. We apply a

standard Hartree approximation to derive effective non-
linear Schrodinger equations that govern the evolution
of a single atom in the ensemble. We discuss the impli-
cations of these equations in some standard atom optics
geometries, illustrating in particular how many-body ef-
fects modify the Pendellosung of Bragg scattering [5],
and in another limit, reducing the problem to a massive
classical Thirring model [6,7], with the possibility of gen-
erating atomic Thirring solitons.

The general many-body Hamiltonian including a two-
body interaction can be expressed in a standard way as

dl d2(l~ Hp~2)g t(1)g(2)

+ — dl d2d3d4(1, 2~V~3) 4)gt(l)Q (2)Q(4)Q(3)

= 'Rp+ V.

Here, Ho is the single-particle Schrodinger Hamiltonian,
and includes the atom-field dipole interaction, the elec-
tromagnetic Beld being either classical or quantized, and
V is the two-body dipole-dipole potential due to the ex-
change of transverse photons. In this paper, all kets ~E)

give a complete description of the single atom states, i.e. ,

they include both the center of mass and the internal
quantum numbers. We use numbers to indicate dummy
variables and letters to label a specific state. The state
~E) is obtained by application of the creation operator
gt(E) to the vacuum ~0), where [Q(E), @t(l')] = 6'(l —E')

for bosons, and the 6 function should be interpreted as a
product of 6 functions for continuous quantum numbers
and Kronecker deltas for discrete ones. A normalized
N-particle state ~Q)~ is obtained as

NI
dl dN fg(1, 2, . . . , N)gt (N) gt(1) ~0), (2)

where the N-body wave function fz(1, 2, . . . , N) is totally symmetric in its arguments. With Eq. (2), the matrix
elements of 'Hp and V become

~(Q~'Rp~g)~ = N dl d(N —1) dl dE (E ~Hp~l) f~(1, . . . , N —1, E )fN(1, . . . , N —1, E) (3)

and
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iv(MI&I4)~ = d1 d(N —2) dEdl'dmdm'(E', m'IVI', m)
N(N —1)

2

x Q (1, . . . , N —2, E', m') f&(l, . . . , N —2, E, m). (4)

We now perform the Hartree approximation, in which the N bod-y wave function fiv(1, . . . , N) is written as a
product of the form fiv(1, . . . , N) = g& i P~(E). The effective single-particle states Piv(E) are assumed normalized,

f P&(E)P~(E)d/ = 1, and are dependent on the internal quantum numbers implicit in the laoel E. This trial ansatz
therefore generalizes previous treatments to allow for the internal degrees of freedom. In the time-dependent Hartree
approximation, the equations of motion for the effective single-particle wave states are determined from the variational
principle [8]

~(gli, h —H—IQ)~ = 0.
N

With the Hartree ansatz, this readily yields the system of effective single-particle nonlinear Schrodinger equations

, ~&4iv(&)
Bt

d2(EIHOI2)Piv(2) + (N —1) d1d2d3(E, 1IUI2, 3)giv(1)giv(2)Piv(3). (6)

All that remains is to evaluate the various matrix ele-
ments in this equation for the explicit problem at hand.
For concreteness, we consider the situation of the near-
resonant Kapitza-Dirac effect, where two-level atoms
with lower electronic level lg) and upper electronic level

I e) are difFracted by a standing-wave monochromatic clas-
sical laser field of frequency 0 and wave number q. The
kets describing the system now take the form IE) ~ lx, p),
where p = e or g, and the interaction between an atom
and the field is described by the Hamiltonian (see, e.g. ,

p 2

~o =
2M

—~(le)(el —lg)(gl)

+«cos(q x) (le)(gl+ lg)(el)

where M is the atomic mass, 6 = 0 —~ is the detuning
between the laser frequency and the electronic transition
frequency a, and R is the field Rabi frequency.

To incorporate the two-body interaction, we proceed
by eliminating the transverse vacuum field and replacing
it by a phenomenological dipole-dipole interaction, which
we assume to be a contact potential of the form

V = (Vo/2q) dx dye(x —y)

x (I* e)ly g)(x gl(y, el+ H') (8)

In this way we approach the problem by replacing the
dipole-dipole potential in Eq. (6) by its first moment.
The coefficient Uo/2q in Eq. (8) then rejects the fact that
the range of the dipole-dipole interaction is of the order of
an optical wavelength A = 2~/q, and Vo is of the order of
hp, where p is the spontaneous decay rate of the upper to
lower electronic state transition. The length scale of the
two-body potential indicates that its b-function approx-
imation is valid for very cold atoms of de Broglie wave-
length large compared to A. The actual dipole-dipole
potential has the same spin-Hip structure, but in coordi-
nate space it is a linear combination of spherical Bessel

functions of the second kind [10].
In the coordinate representation, we have Piv(E) —+

P&(x), where we have dropped the index N for clarity
and p, = e or g labels the electronic state. Combining
Eqs. (7) and (8) in Eq. (6) then yields the pair of nonlin-
ear Schrodinger equations for the effective single-particle
states P, g(x),

5 8 1
P, (x) ——MP, (x)

+« cos(qx)Pg(x)
+(N —1)(Vo/q) I&.(x) I'&.(x)

the equation for Pz being obtained by the substitution
e~g, b~ —b.

These equations form the basis of nonlinear atom op-
tics and are the central result of this Letter. In the limit
Vp ~ 0, they reduce to the conventional single-particle
equations of atoms optics. Furthermore, they show that,
from the perspective of a single atom, the N —1 other
bosonic atom effectively act as a nonlinear medium. This
is analogous to the situation in conventional nonlinear
optics, where the presence of a medium can lead to an
effective nonlinear behavior of the light field when the
medium dynamics is traced over. In the present case, the
origin of the nonlinear behavior of the atoms is of course
the dipole-dipole interaction, whose ultimate origin is the
interaction of the atoms with the transverse vacuum field.
When this field is traced over, as is the case in the effec-
tive Hamiltonian (8), the reversal of the roles of light and
matter between the situations of conventional and atom
optics is carried over into the nonlinear regime. We note,
however, that the interaction potential (8) leads only to
a modulation of the upper state wave function due to
the presence of a lower state population and vice versa
(cross-phase modulation. ) This is in contrast to a third-
order optical nonlinearity, which generally also includes a
term corresponding to the self-interaction of the individ-
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BG(x, t)ih
Ot

ih2q BG(x, t) M,
2M Bx 2

+(N —1)(vo/q) IE(* t) I'G(* t),

BE(x, t) ih2q BE(x, t) MZ

Bt 2M Bx 2

+(N —1)(v.iq) IG(, t) I'E(*,t)

ual components of the wave function (self-phase modula-
tion. ) Such a contribution would also appear here if the
two-body interaction contained a spin-preserving contri-
bution due to the exchange of longitudinal photons, e.g. ,

the van der Waals interaction.
Equations (9) have direct analogies with nonlinear op-

tics, in particular gap solitons in nonlinear periodic struc-
tures [11], and nonlinear focusing effects [12]. Further-
more, if these equations are transformed to momentum
space they reveal a variety of four-wave-mixing terms in-

cluding those responsible for phase conjugation. This
raises the possibility of an atomic phase conjugator ca-
pable of reconstructing distorted atomic wave functions.
These prospects, including the study of atomic gap soli-
tons [13],shall be pursued in future work. In the rernain-
der of this Letter, we reexamine the problem of atomic
scattering from a standing-wave light Beld in light of
the nonlinearity of Eqs. (9), and predict nonlinear Pen-
dellosung oscillations as well as atomic Thirring solitons.

Consider a quasi-plane-wave atomic beam whose ini-
tial momentum along the longitudinal z direction is large
enough to be treated classically, and restrict the quan-
tum description of the atomic motion to the transverse
x direction. The atoms are taken to be at resonance
with the Beld, 6 = 0, and prepared in their ground elec-
tronic state lg), with initial momentum p = hq/2. It
is known from the theory of the near-resonant Kapitza-
Dirac eKect that such atoms can undergo Doppleron-type
resonances [14,15] between electrotranslational states of
momenta +hq/2 and —hq/2. To proceed we express
the effective single-particle states P~(x, t) and P, (x, t)
in the form Pz(x, t) = G(x, t) exp(iqx/2) exp( —iu„t/4),
P, (x, t) = E(x, t)exp( —iqx/2') exp( —iw„t/4), where G(t)
and E(t) are assumed to be slowly varying functions of x,
q'IG(*)

I
» qlB*G(x) I

» IB.'G(x)
I

and ~. = (Lq)'/2m is
the recoil frequency. Substituting these states into Eqs.
(9) and dropping slowly varying terms yields the pair of
equations

These equations provide an accurate description of the
Doppleron resonance of atom optics in the limits that
the envelope wave functions G and E vary little over an
optical wavelength and ~„/R. )) 1, which restricts atomic
scattering to the two selected electrotranslational states.

Consider first the case of a pure momentum-eigenstate
input, so that the transverse derivatives may be dropped
in Eqs. (10). The resulting pair of equations is eas-
ily solved with IE(0)I2 + IG(0)I2 = 1/L, and the initial
condition G(0) = L i~~, E(0) = 0, where L is the quan-
tization length, to give

IG(t) I' =,L [1 + cn(~t l~)]

where cn is 3acobi elliptic function and n = [(N—
1)/(N, —l)]2, the critical number of atoms N, being
defined as N, = 1+ 2h'R/IvplL 2qL('R/p). In the
limit n = 0 (N = 1 or alternatively Vp = 0), the solu-
tion (11) reduces to the Pendellosung solution IG(t) I

(1 + cos7Z, t)/2L, which gives rise to periodic and com-
plete transfer of population between the two states. The
general solution (11) is also periodic, but with period
4K(o,), K(n) being the complete elliptic integral of the
first kind. In the regime 0 & N ( N„ the oscillations
in population are still complete, but the period increases
with increasing atom number N, and actually diverges
for N = N, . For N ) N„ the period decreases with in-
creasing N, but the oscillations are no longer complete.
This nonlinear Pendellosung solution is a dramatic man-
ifestation of many-body effects in atom optics. Note that
if the number N of atoms is fluctuating, Eq. (11) must be
summed over the probability distribution p(N), thereby
leading to collapses and revivals of IG(t) I

.
As a second example, we consider again Eqs. (10),

but retaining the spatial derivatives. This system can be
converted to the canonical form of the classical massive
Thirring model (MTM) of field theory by making the
substitutions qx ~ X, cu„t ~ T, 7Z,/2w„~ m, (N—
1)Vp/2~ ~ —g, E ~ gi, and G ~ g2 [7]. The MTM is
an integrable classical Beld theory, and that it has exact
soliton solutions. In particular, the MTM has a two-
parameter family of fundamental soliton solutions whose
parameters control the velocity and charge of the soliton.
The same soliton solutions apply to the present problem,
where the velocity corresponds to a transverse velocity
and the charge is Bxed by the normalization of the atomic
wave function. Then, the zero velocity atomic Thirring
soliton takes the form

„,( m/2
(N —1)Iv,

MZ, /2
(N —1)lv.

l

sin Qe+' 'sech(x/xp + iQ/2),

sin Qe+' 'sech(x/xp ~ iQ/2), (12)

where v = (7Z,/2) cos Q, qxp = 2u /(7Z. sin Q), Q = (N —l)lvpl/4~„, and the upper (lower) sign corresponds to Vp

negative (positive). Atomic Thirring solitons are therefore possible irrespective of the sign of the two-body interaction.
Note also that in compliance with our assumptions, the width of the soliton is always broader than an optical wave-
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length since in Bragg-type diffraction u„/'R )) 1.
The atomic Thirring soliton corresponds to a coherent

superposition of the two electrotranslational states par-
ticipating in the Doppleron resonance. This combination
has the property that it does not distort under the com-
bined effects of the diffracting standing-wave light field
and the nonlinearity due to many-body effects. In con-
trast, without the nonlinearity the standing wave acts as
a dispersive element which causes any input of finite spa-
tial extent to broaden and also generally leads to diffrac-
tion into other scattering orders. The atomic Thirring
soliton is immune to both of these processes. More gen-
erally, soliton solutions are expected to play a central role
in the dynamics of the system even in the presence of non-
integrable perturbations, since they correspond to stable,
coherent excitations of the many-atom system [16].

The question remains to determine whether the effects
outlined in this Letter are amenable to experimental veri-
fication. Nonlinear effects are expected to become notice-
able as soon as the effective nonlinearity (N —1)Vp~g] /q
becomes comparable to the effects of linear diffraction,
whose strength is of the order of 5 q /2M. This yields
the critical linear density pr, N/I w„q/Pp. Here P is
a geometrical factor which reflects the fact that the effec-
tive strength of the dipole-dipole interaction is given by
the fraction of spontaneously emitted photons that can
be reabsorbed by atoms inside the laser beam. For the
sodium D-line, we have pl. —270/P cm ~, which corre-
sponds to acceptably low densities of p 2 x 10~ cm
for P = 10 2. Of course, larger P's, and lower densities,
could be achieved in cavity @ED geometries.

While the competing effects of spontaneous emission
are of course always of concern in atom optics, they can
be circumvented to a large extent by working off reso-
nance. Indeed, except for the density requirements just
discussed, the conditions under which linear and non-
linear atom optics experiments can be carried out are
essentially the same [9]. While the examples explicitly

discussed in this Letter are on resonance, they can read-
ily be extended to off-resonance situations. In this case,
Thirring solitons, for example, degenerate into gap soli-
tons [13].
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