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An expression for the lattice eAective action induced by chiral fermions in any even dimensions in

terms of an overlap of two states is shown to have promising properties in two dimensions: The correct
Abelian anomaly is reproduced and instantons are suppressed.
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The fundamental building blocks of matter, as known

today, are chiral. If there are no anomalies, relativistic
field theory can consistently describe chiral matter in-

teracting via gauge boson exchange to any order in the
Feynman diagram expansion. If matter were vectorlike
and all couplings were asymptotically free, work based on
lattice formulations shows that one can sum all diagrams
unambiguously. On the other hand, diSculties encoun-
tered in regularizing chiral fermions (even in asymptoti-
cally free situations) have raised doubts about the ex-
istence of chiral gauge theories at the nonperturbative
level. This is a central problem of particle-physics-
oriented field theory and its resolution may open up new

possibilities in the endeavor to unify more of the observed
forces in nature.

We focus on the lattice formalism because one can
then regularize the bosonic degrees of freedom in a gauge
invariant manner. The di%culties arising upon the addi-
tion of chiral lattice fermions are well known [1]. If we
do not break gauge invariance in the fermionic sector,
uninvited "doublers" are produced, making the particle
content vectorlike and protecting the theory from ever
having any anomalies. If we break gauge invariance, re-
covering it in the continuum limit for anomaly free repre-
sentations is, at best, a matter of delicate fine tuning that
would be very difficult to implement [2].

The modern approach [3] to the quantization of chiral
gauge theories is a two-step process: (a) regularization of
the chiral fermionic determinant in an arbitrary smooth
gauge background and (b) subsequent integration over all

gauge fields. If there are no anomalies, the answer to the
first step is gauge invariant and the subsequent functional
integration over the gauge fields can be attempted. The
problem of regularizing chiral fermions on the lattice is

encountered at the first step and we concern ourselves
mainly with this step in this Letter. However, our formu-
lation accepts arbitrary lattice gauge backgrounds. Some
readers may object to the strategy which led us to the two
steps in the first place, because fermionic and bosonic
fields are quantized sequentially rather than simultane-
ously. We cannot overrule this objection; however, the
progress in our understanding of anomalies in the mid
1980's [3] and the discovery of the important instanton
eff'ects in the 1970's [4] were made within this two-step
framework.

An easy way of presenting a new approach due to Ka-
plan [51 is as follows [6]. We start with a generic vector-
like gauge theory that is easy to regularize:

Z=Z, +Z, (A),
Xi =i tit(8 i')—iit+ i7i(MP++ MtP )y.

P+ =(1 ~ ys)/2 and A„=A„'T' where T"s are genera-
tors in the appropriate representation of the gauge group.
Xs(A) is the pure gauge part, whose explicit form is ir-
relevant to us here. To achieve chiral symmetries, we
need massless fermions. M is a square matrix and there-
fore M and Mf will have equal rank, implying that mass-
less fermions will occur in pairs of opposite chirality. We
can overcome this only if we make M infinite dimensional
and endow M with a nonzero analytical index. The
infinite-dimensional "flavor" space, whose sole role is to
deal with the specific problem of chiral massless fermions,
adds an additional source of indeterminacy to our prob-
lem. We can therefore regularize the ultraviolet infinities
in any way we wish (since they are "released" from the
"duty" to also induce anomalies), and we choose the lat-
tice. The specific problems having to do with chirality
are relegated to the step when we try to control the
infinity of the internal (flavor) space.

The simplest way to realize a nontrivial index for M is
to choose the internal space as the real line and choose
M =8,+f(s) with f(s) asymptotically approaching con-
stants of diferent signs when s + ~. This produces
the wall system discussed by Callan and Harvey [7]. s
space can also be discretized and the entire Callan-
Harvey analysis can be transferred to the lattice. This
observation is due to Kaplan [5] who also showed that on
the lattice one may work with a defect strictly local in s.

We deal with the additional infinity by viewing internal
space as the Euclidean time axis of an s-independent
Hamiltonian 0 that is subjected to a mass shock at s =0
[8]. The chiral determinant is replaced by the overlap of
two ground states, corresponding to H ~ for s & 0 and
s ( 0, respectively. A straightforward derivation [8]
gives

0+= —a 8+a,
(2)
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U„„ is a matrix in the appropriate representation of the
gauge group and is associated with the gauge field on the
link at site n in the positive p direction. We have used
the following representation for the y matrices:

p 1 0
QP t 0 & $5 0

where oo=i and oz,' j =1, . . . , d —
1 are, the 2

x2"j ' generalization of Pauli matrices to d (even) di-
mensions. 0 4 m & 1 is a mass parameter. The two
Hamiltonians in (2) are Hermitian due to the hermiticity
of B — in (3). Both B — are positive definite for all
values of the gauge field and therefore H+ are well
defined for all gauge fields. One can compute the deter-
minants of e — and prove that both H+ are traceless
[8]. This indicates the presence of both positive and neg-
ative eigenvalues. For any choice of gauge fields, H —has
no eigenvalues in the interval I =(—ln(1+m),
ln(1+m)). The proof of the above statement is as fol-
lows. Let (,", ) be an eigenvector of e with eigenvalue k.
From (2), we have (XB —1)u =Cv and [1 —(I/X)B ]v
=Cpu, implying u t(iLB —1)u+vt[(1/X)B —1]v =0.
Since IIB II ~ 1+m, we have the desired result, namely,
k g 1. Therefore, the eigenvalues of H —as a function of
gauge fields can never cross zero and H — has an equal
number of positive and negative eigenvalues for all gauge
fields. The same is not true of H+.

The gauge action induced by the integration over fer-
mions is then given by the following formula:

s, (v) u(0 IO+)u ((e+(u) —e (v)1
e ' e 4

, &o —lo+),
The lo+')v are ground states of H+ (U) and the phases
4&-+ (U) are defined by a convention borrowed from
Wigner-Brillouin perturbation theory:

e (u) v(0~ lo~))
1
u&0+ lo+ )) I

For all gauge fields u(0 —lo —) ) is nonzero. But
v(0+ lo+)i can be zero for some gauge fields because the
numbers of positive eigenvalues of H+(U) and H+(I)
can be different. In such an instance, u(0 —lo+)u also

a„z; and a„z; are fermion operators satisfying canonical
anticommutation relations: [anAi, amBj j ~nm~AB~ij [unAi

a ajj =0, [a„~;,a ajj =0. The indices A and B run over
2 "~ spinor components and i and j over group indices. n

is the d-dimensional space index. B —and C are matrices
depending on the gauge fields. Explicitly,

Bnai, mpj
= (d+ I ~ m )~nm~ap~ij

vanishes for the same reason and a definition of the
phase, (I)~(U), for such gauge fields is not needed.

Equation (4) completely defines the real part of S;(U).
Equation (5) is one choice to fix the phase ambiguity in

(4). It is only in (5) that gauge invariance is broken; any
other definition of d&~(U) which diff'ers from the above
by a local functional of U —

1 (i.e., when expanded in

U —
1 the coefficients are analytic at the origin of lattice

momentum space) will be acceptable. The real part of S;
is naturally gauge invariant; another way to enforce the
gauge invariance of Re(S;) is proposed in [9].

A continuum variant of the overlap formula was shown
recently to give the correct anomaly in two Euclidean di-
mensions with a U(1) gauge group [8]. The calculation
is tedious because there are no straightforward Feyn-
man-diagram techniques and one has to use some form of
Hamiltonian perturbation theory. To do the same calcu-
lation on the lattice would be even more tedious due to
the extra nonlinearity in the expressions for e —. In ad-
dition, such a calculation would not tell us whether non-
perturbatively 5; behaves correctly at the semiclassical
level. Therefore we proceed numerically.

We set d =2 and work on a square lattice of size L x L.
We use antiperiodic boundary conditions for the fermions
(relative to the gauge backgrounds introduced below) to
avoid divergences associated with constant spinors. For a

Hgiven gauge configuration the matrices e are con-
structed in momentum basis and diagonalized by the
Jacobi method. The corresponding one particle states are
filled to construct the vacua entering the overlaps. The
overlaps in (4) and (5) are evaluated by computing the
appropriate determinants.

For sufficiently small lU —I
l

the gauge fields are per-
turbative and each of the H+ has L positive eigenval-
ues. The determinants are nonvanishing and S;(U) in (4)
is obtained. To check the anomaly we choose

A„((t )
U„,„=exp i " cos

2zn k ok'+
L L

as the gauge configuration on the lattice. k„E Z is kept
fixed as L ~. [U„"„jrepresents a standing plane wave
with a fixed number of nodes on the torus in the continu-
um limit. A„(P) =A„+2psin(nk„/L) represents a family
of gauge equivalent connections. When tp is varied, the
imaginary part of S;(U) should change and the change in

the continuum limit is

; es(A„((())
lim —— " = [A ) kq —A2k (] . (6)

BP ~ =(i 4)r

We fix k =(1,0), A) =A2=0.32 and, in preparation for
L ~ limit, compute the left-hand side in (6) as a func-
tion of L. The computations are performed at two
difTerent values of m. The data points are shown in Fig. 1

as a function of 1/L . As expected, the continuum limit
is independent of m. Extrapolation to L =~ is smooth
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FIG. l. The anomaly [left-hand side of (6)l as a function of
lattice size. The points are for L =6 to 20 in steps of 2 at
m =0.5,0.9. The lines are fits to the data for L ~ 10.

and yields —0.02545(5) for the anomaly which agrees
with the continuum value of —0.02546.

Two comments are in order here. Since we used plane
waves, once several k's are checked, the numerical work
is as good a cheek as an analytical calculation would be.
The coeScient in front of the curvature in the anomaly
equation is I/4x and not I/2x as obtained by Jansen [10]
in the three-dimensional wall setup. This reflects the fact
that the current considered by Callan and Harvey is
affected by the covariant form of the anomaly, not the
consistent one. Since we deal with the eff'ective action
directly we have to obtain the "consistent" value [8,11].

The overlap in (4) will vanish when the number of pos-
itive eigenvalues of H+ diff'ers from the free case. This
situation is expected if the set of gauge fields represents a
U(1) connection on a nontrivial principal bundle over the
two-dimensional torus. The first Chem number, repre-
sented by the "lattice topological charge, "

is affected and not H is consistent with the observation
by Golterman, Jansen, and Kaplan [13] that the
Goldstone-Wilczek currents are present only on one side
of the defect. We added random noise to the above
gauge configuration, multiplying each link variable U by
e'~ with p randomly chosen in the interval ( —x/6, x/6)
and found that the qualitative behavior was robust.
Generically, the behavior we obtain is clearly of the kind
we would expect if instanton eff'ects are to be reproduced.
It would be interesting to insert the appropriate fermion
operators to obtain a nonzero result and carry over the
't Hooft computation [4] of fermion number violating
processes to the lattice.

The extension of the results in this paper to four di-
mensions is just a question of computer time. We think it
would be feasible within current computer capacities. In
two dimensions, for modest volumes, it appears feasible to
proceed to the next stage, i.e., estimate the average over
gauge fields. This by itself might be quite interesting be-
cause even in two dimensions chiral theories are either
exactly soluble or, if also strongly coupled, quite intract-
able. One may also revisit attempts to construct anoma-
lous gauge theories: For example, one may check whether
the a = I case of the Jackiw and Rajaraman [14] continu-
um construction can be reproduced on the lattice.

We should stress that we have invested little time to
date in thinking about efticient methods of computation
in four dimensions. We were only concerned with what
one could do if computer power were unlimited. We be-
lieve that the approach outlined in this paper has
suScient potential to warrant more intense scrutiny.

We would like to thank T. Banks, D. B. Kaplan, M. F.
Golterman, S. Shenker, and E. Witten for discussions. E.
Witten was probably aware of a connection between the
chiral determinant and some form of overlap since the
mid 1980's. This research was supported in part by DOE
under Grant No. DE-F605-90ER40559.

Note added: —Since the original submission of this
manuscript, we have carried out similar tests on four-
dimensional tori and obtained correct behavior in pertur-
bative and nonperturbative Abelian backgrounds.

ln(U, )
Cl =

&& 2%i
(7)

should be nonzero in such an instance [12]. In (7),
ln(l) =0, the cut is along the negative real axis, and the
sum runs over all elementary plaquettes. U&& is the paral-
lel transporter around the plaquette 0. A simple choice
that produces a nonzero Cl is U&& =exp(2niq/L ) for all
plaquettes with q some fixed integer as L ~. Ci =q
and this configuration has a smooth continuum limit.
A gauge configuration that produces this uniform U&&

is U&„.,..& 1 =exp[(2xiq/L )n2], U«, ,L i) q =exp[(2xiq/
L)nl] and all other U, z are equal to unity. For this
gauge configuration at L =6, we found that H+ had
36 —

q positive eigenvalues for all iqi ( 5. That only H+
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