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Imprint of Gravitational Waves on the Cosmic Microwave Background

Robert Crittenden, i J. Richard Bond, 2 Richard L. Davis, i George Efstathiou, s and Paul J. Steinhardt'
'Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 1910$

Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
Department of Astrophysics, Oxford University, Oxford, England OX1 9RH

(Received 25 March 1993)

Long-wavelength gravitational waves can induce significant temperature anisotropy in the cosmic
microwave background. Distinguishing this from anisotropy induced by energy density fluctuations
is critical for testing inflationary cosmology and theories of large-scale structure formation. We
describe full radiative transport calculations of the two contributions and show that they di6'er

dramatically at angular scales below a few degrees. We show how anisotropy experiments probing
large- and small-angular scales can combine to distinguish the imprint due to gravitational waves.

PACS numbers: 98.80.Cq, 04.30.+x, 98.70.Vc

The cosmic microwave background (CMB) tempera-
ture anisotropy may be induced by energy density Huc-

tuations and by gravitational waves [1], corresponding to
scalar and tensor metric perturbations, respectively. Al-

though anisotropy measurements probing angular scales
above a few degrees [e.g. , those from the Cosmic Back-
ground Explorer (COBE) [2]] cannot discriminate scalar
from tensor [3], we show in this Letter that the two con-
tributions can be separated when data from smaller angle
experiments are used as well.

Resolving the two contributions relies upon detailed
theoretical predictions for the form of the multipole com-

ponents, a& and a&, of the relative temperature pat-(S) (T)

tern on the sky, AT/T(9, P). For inflationary models,
each multipole for the two modes is predicted to be
statistically independent and Gaussian distributed, fully

specified by angular power spectra, C&
——(~aI ~ ) and(S) (S) 2

C& —— (~a&~
~

). Although C& has been calculated

before [4], Ce was previously known only for low mul-(T)

tipoles, E & 30, relevant for angles above a few degrees
[1,3,5]. For these E's, the dominant spatial wavelengths

contributing to C& and C& were outside the horizon
at photon decoupling, and both scalar and tensor modes
induce similar redshifts and blueshifts in the CMB [1,3,5].
For example, COBE's difI'erential microwave radiometer
(DMR) is unable to distinguish the two contributions due
to cosmic variance (from the theory signal) and experi-
mental noise, although their sum can be determined from
one year of DMR data to within 30% [see Fig. 2(a) below],
improving to about 15% with four full years of data.

In this Letter, we compute C& to much higher multi-

poles, and show that the predicted C& becomes highly(T)

suppressed relative to C& at large Z. The dominant(S}

wavelengths for E + 30 were inside the horizon at de-
coupling. Inside the horizon, scalar-mode anisotropies
are enhanced by the gravitational instability of density
perturbations and by Thomson scattering from moving
electrons, whereas gravitational waves disperse as freely
propagating, massless excitations and redshiR away.

Taking advantage of this difFerence, we find that combin-
ing experiments at small- and large-angular scales can
determine the scalar and tensor components. Current
CMB anisotropy data at small scales are not yet good
enough to do so, especially since some of the signals ob-
served may be galactic rather than cosmic in origin, but
the statistical errors of these and other near-future ex-
periments are small enough to allow separation at about
the two sigma level, as we show here.

Separating tensor from scalar is essential for theories
of cosmic structure formation since it is from C& that
we can infer the primordial density Huctuations. It also
provides a critical test for inflationary cosmology [3,5,6].
All inflation models produce a postinflation spectrum
of scalar and tensor metric fluctuations with some tilt
away from strict scale-invariant form (scalar spectral in-

dex n, = 1, tensor index nt ——0). In fact, inflation pre-
dicts a relation between the gravitational wave content
of the CMB anisotropy and the tilt [3,5,6]:

d, '/C,'" = 7n, =7[1—n, +-e]. (1)

C2 and C2 are the E = 2 (quadrupole) components of(T) (S)

the power spectrum and b—:(2V'/3H2)' where V and H
are the inflaton potential and the Hubble constant, re-

spectively, evaluated sixty e-folds before the end of infla-
tion (prime denotes derivative with respect to the inflaton
field). Both 8 and corrections to Eq. (1) are negligibly
small (hence, nt —1 —n, ) for generic models of inflation,
including extended, natural, chaotic, power-law, or new
inflation. [The only known exceptions are cases where b is
made non-negligible by artificially fine tuning V such that
the inflaton lies near an inflection point (V' = 0; V" g 0)
or along a linear ramp (V' g 0; V" = 0) just sixty e-folds
before the end of inflation. For this study, we will ignore
these exceptional cases. ] Confirmation of Eq. (1) would
be new support for inflation providing detailed informa-
tion about the first instants of the Universe.

For a given sum of C& and t
&

fixed by large-angular(T) (S)

scale measurements, a larger tensor component reduces
the small-angle anisotropy. Several other factors can have
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a qualitatively similar effect (e.g. , increased tilt, 1 —n„.
decreased baryon density, A~, and a nonstandard recorn-
bination history), but there are quantitative differences
which we now describe.

To compute C&, we evolve the distribution function,
f(x, q, t), for photons at position x at time t with momen-
tum q, using first-order perturbation theory of the gen-
eral relativistic Boltzmann equation for radiative trans-
fer [4], with a Thomson scattering source term. Photon
polarization is included by making f a four-dimensional
vector with components related to the Stokes parameters
(f, with s = t, p, u, v correspond to the usual I, Q, U, V
Stokes notation) and applying Chandrasekhar's develop-
rnent of the scattering source term for Rayleigh (and thus
Thomson) scattering in a plane parallel atmosphere [7].
In the scalar case, only ft and the "polarization" f„are
needed, so two transfer equations are required [4]. In the
tensor case f„also does not vanish, but it is related to
f„, so again only two perturbed transfer equations turn
out to be required. To describe these equations, we in-
troduce the relative perturbed distribution functions [4]

= 46f, /(Tp O f/OTp), where Tp is the CMB temper-
ature and f is the unperturbed Planck distribution.

To evolve the coupled equations, both 4( ) and the(T)

metric are expanded in plane waves. In the frame in
which the wave vector k is along the z axis, the grav-
itational wave degrees of freedom in the metric are the
transverse traceless modes h+ ——hii = —h22 and h&&

——

hi2 = h2i, which obey an Einstein equation, the wave
equation for free massless particles: h, + 2 —,h, + k2h, =
0, 6 = +, x. Here the dot denotes derivative urrt confor-
mal time, 7 = f dt/a(t) where a is the expansion factor,

solved by evolving the Friedmann equation.
The radiative transfer equations for the two gravity

wave polarizations separate, having an overall factor of
cos(2$) for 6 = + and of sin(2$) for 6 = x, where (8, P)
are the polar angles, which we remove by introducing
new variables, following Polnarev [8],

6I+ (1 —p, ) cos 2P + AI „(1—p, ) sin 2P,

(1+p ) cos2$+ A„„(1+p ) sin2$,
—~(+)2p sin 2& + ~( „)2p cos 2P,

(2)

where p, = k q and q is the comoving photon momentum.
The combination 4p, + 4„, is unexcited by gravity(T) (T) ~

waves, as is 6(, so the four Stokes radiative transfer
equations reduce to two:

—ikpA„—h, —aol n, A„+aoTn, @, ,
(T) ' (T)

zkpAp—, —aoTn, Ap, —aoT n, iIr, ,
(T) (T)

i -(T} i-(T) 3 -(T)
[ 10 te, p 7 tc, 2 + 70 te, 4

3 (T) 6 (T) 3 /(T)
pe, p 7 pe, 2 7P pe, 4 ]

Here oT is the Thomson scattering cross section, and
n„ the free electron density, is evolved using a careful
treatment of the recombination atomic physics.

As in the scalar case [4], we solve these equations by
expanding in Legendre polynomials, e.g. , At, ——P&(28+
l)&t, re(p), converting (3) to a hierarchy of coupled

equations. Our solutions, Kt, t(k, 7) and 6p, r(k, 7), can
be combined into the power spectrum by summing over
k and polarizations

where AtG t = (At+ t —iAt„g)/~2. A similar expression
applies for the polarization power spectrum [9]. A useful

check is to assume recombination is sudden at 7

The free-streaming solution from ~„ to the present wo is
then 6t, t = (—i) f ' drjt[k(70 —7)]h, (7). Substitution
into Eq. (4) gives the Abbott and Wise [1] formula for

C&, with which our numerical results agree for low E.
In this paper, we discuss results for standard cold dark

matter (CDM) models with normal recombination, al-
though it is straightforward to adapt the numerical codes
to other cosmological models (e.g. , mixed hot and cold
dark matter). We let n„ the ratio of tensor-to-scalar
quadrupole anisotropy, the baryon density A~, and the
Hubble parameter [10] h vary freely.

Figure 1 shows a CDM model with A~ = 0,05, h = 0.5,
and n, = 0.85, which accounts for the slight downward

tilt in CI at small /. [We plot E(E+ 1)Ct, since it is

flat for scale-invariant (n, = 1) Ct at small E.] The(s)

sharp increase in C& for 8 & 50 followed by increasingly

damped oscillations is due to adiabatic compression of
photons and Doppler shifts during decoupling [4]. In con-
trast, the tensor moments drop sharply; then the curve
settles to a tilted spectrum similar to the scalar case for
5 ( l ( 50. At l ) 50, the tensor drops sharply just
as the scalar rises. We have set C2 /C2 = 1, the in-(T) (s)

flation prediction of Eq. (1) for a tilt of n, = 0.85. We
also illustrate how a scalar-only spectrum with low A~

(e.g. , the dashed curve) partially mimics the scalar-plus-

tensor shape for Arr = 0.05 (assuming a larger C2 ).(s)

Clearly, precise measurements are required to separately
determine C2 )/C2 and Arr.(T) (s)

The filter functions are shown for various experiments
in Fig. 1(b). The theoretical prediction for the rms fluc-

tuations is found by multiplying Ct/47r by the filter and
summing over E, m. From Fig. 1, we see that large-angle
experiments (e.g. , DMR [2], MIT [ll], and Tenerife [12])
are equally sensitive to tensor and scalar modes, smaller-
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FIG. 1. (a) Angular power spectra for the tilted standard
CDM model shown for tensor, scalar, and the sum, The light
dashed line is an Air = 0.01 model. (b) shows the filters for
the experiments used in this paper as examples (heavy lines).
The light lines are other representative experiments.

angle experiments (e.g. , SP89 [13] and OVRO [14]) are
sensitive mostly to scalar, while the intermediate SP91
[15,16] can measure some tensor, although predominantly
scalar.

A quantitative experimental fit to cosmological pa-
rarneters is obtained by constructing likelihood functions

Z, (C2, C~, n„Air, tr) for each experiment, e, assurn-(~) (T)

ing Gaussian statistics [17]. Assuming the experiments
are statistically independent (because they cover unre-
lated regions of the sky or very different angular wave
bands), we combine the l:,'s to get the full likelihood,
l: = Q, Z„as shown in Fig. 2. For all but DMR, 2,
is calculated using Bayesian techniques [17] which take
into account the removal of any linear combinations of
the data such as gradients or averages by marginaliz-
ing over the coeKcients, assuming uniform prior prob-
ability distribution in these coefBcients. For SP91, the
method was extended to treat simultaneously the four
frequency channels. For DMR, we used the Smoot et at.
"90 A+ B x 53 A+ B" (quadrupole-subtracted) correla-
tion function [2] with a Gaussian approximation for the
likelihood [18]. A more complete analysis will only be
possible once the DMR data are released. In Fig. 2, we
have taken Air = 0.05(2h) 2, consistent with nucleosyn-
thesis limits [19], and h = 0.5.

Figure 2(a) displays the DMR likelihood contours in

the C2 —C~ plane for fixed n, (0.85), demonstrating(s) (7)

that DMR can measure C2 +C2, but cannot discrim-(~) (T)

inate scalar and tensor. A preferred tensor-scalar ratio
does arise in Fig. 2(b) as soon as we incorporate small-
angle data. Figure 2(b) combines the DMR data and the
4-frequency-channel data from a 9 point strip [15] and
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a 13 point strip [16] in the SP91 experiment, as well as
SP89 [13] and OVRO [14] data (which give weak upper
limits but no detections). For simplicity, errors in the
different frequency channels and between the two strips
are treated as uncorrelated. There appear to be detec-
tions, but the signal may be contaminated by unknown
sources.

Figure 2(b) is tantalizing but inconclusive evidence
for a gravitational wave contribution. Future refinement
can be anticipated by using simulated data sets, con-
structed by taking single realizations of theoretical sig-
nals and adding experimental noise associated with sta-
tistical errors (but no systematic errors). In Figs. 2(c)
and 2(d), the input signal is for a standard CDM model

with n, = 0.85 and equal C2 and C~ ([7.5 x 10 s]2).
We then simulate a suite of plausible forthcoming exper-
iments: DMR with 4-year error bars; six 13 point strips
from an SP91 configuration (18—27 pK error bars for each
of the four frequency channels); six 9 point strips from
an SP89 [13] configuration; and an OVRO22 configura-
tion (7' beam, 22' double-difFerence throw, with 25 pK
error bars). Reduced (= 15 pK) error bars were taken for
SP89 to represent ongoing or planned experiments with

FIG. 2. Likelihood contour maps for scalar ([C2 ]
~ /

10 ) vs tensor ([C2l l]'~ /10 ) amplitudes are shown in

(a), (b), and (c) for the standard CDM model with fixed
n, = 0.85 tilt. The light curves are 1, 2, and 3 sigma lines, the
heavy curve or x gives the maximum likelihood. (a) DMR
only. (b) DMR plus the 9 and 13 point SP91 data, along
with SP89 plus OVRO. (c) shows the maps with simulated
large- and small-angle data consisting of DMR (with 4 year
error bars), six 13 point SP91 strips, six 9 point SP89 strips,
and one OVRO22 strip. The mean CDM signal input into
the simulated data is denoted by the square. (d) shows 1,
2, and 3 sigma likelihood contours for the simulated data in

[C2 ]
~ n, space, co-nstrained to the C2~ /C2 l trajectory

defined by Eq. (1) (solid) and the unconstrained maximum
likelihood trajectory (dashed). Shading indicates the range
for which CDM models are not dynamically viable.
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beams 0.5' which, with multifrequency observations,
can achieve these sensitivities [20].

Figure 2(d) shows two projections onto the C2 n, -(s}

plane. The heavy contours are the likelihood if C2( ) /C2(

is restricted to the trajectories predicted by inflation,
Eq. (1). The maximum lies within 10% of the input
signal. In contrast, the light curves show the contours
when the (unrestricted) maximum likelihood value for

the given C2 and n, is taken. The extended 1 sigma(s)

band along C2 /C2 --[2 —5.2(1 —n, )] indicates an(T) (s)

inability to distinguish large tilt from large tensor com-
ponent for these sensitivities. The band runs across the
infiation prediction (heavy lines), intersecting in a narrow
range about n, —0.83, very close to the input value.

We conclude that current and near-future anisotropy
experiments are unable by themselves to definitively test
infiation [Eq. (1)] or determine the gravitational wave
contribution to the CMB. For the short term, conclusions
can only be drawn by adding extra assumptions and/or
other data. For example, we have shown in Figs. 2(c)
and 2(d) that, if Eq. (1) is assumed, n, and the gravita-
tional wave imprint can be determined to within 2 sigma.
Alternatively, other cosmological constraints can be in-
voked. For example, a variety of arguments imply that
the rms amplitude of the density fiuctuations on scales
of 8h Mpc (o.s), which is used to measure the amount
of nonlinear dynamics in large-scale structure calcula-
tions, cannot lie outside of the range 0.45 and 1 for CDM
(0 = 1) models [6,21]; this translates to the shaded region
in Fig. 2(d). If one assumes a model of galaxy clustering
with linear biasing, a tilt n, 0.65 is required for stan-
dard CDM models to reproduce the galaxy correlation
function [6] (which would exclude our input model). This
restriction may be relaxed with less simplistic CDM mod-
els of galaxy formation, and in cosmologies with more
power in the density fluctuations than CDM has on large
scales [21).

The long-term future is brighter. Extensive mapping
of the microwave sky on small- and intermediate-angular
scales can lead to highly accurate determinations of the
spectrum; e.g. , we find that the limiting cosmic variance
uncertainty in AT/T is only a few percent for SP89 and
SP91 configurations. Even at large angles where cosmic
variance is higher, we find that 5% accuracy should be
achievable. Hence, given optimal experimental designs,
there should be sufhcient resolution for a fully indepen-
dent test for inflation, theories of large-scale structure,
and the imprint of gravitational waves.
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