
VOLUME 71, NUMBER 19 PH YSICAL REVI EW LETTERS 8 NOVEMBER 1993

Fundamentally Discrete Stochastic Model for Wind Ripple Dynamics
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We present a discrete, stochastic model for wind formed ripples in sand, which are observed to in-

crease in size through mergers and seemingly approach an asymptotic spatial scale. The model is shown

to predict (1) a logarithmic increase in pattern scale with time, (2) a proportionality between the micro-
scopic discrete scale (sand grain diameter) and the macroscopic pattern scale (ripple height), and (3) a
lack of scale separation. The implications are that growth and apparent stabilization of scale both can
be explained by a single mechanism, and that the evolution of wind ripples and other physical systems of
this type cannot be modeled by either deterministic methods or spatial continuum methods.

PACS numbers: 91.10.Jf

Wind formed ripples in sand are among the many
striking landform patterns characterized by a definite
scale (Fig. 1). Sand grains on a sand bed are transported
and rearranged into wind ripples primarily by high-
energy impacts with the surface of grains accelerated by
the wind on long, low-angle trajectories [1]. Because the
impacts are roughly random and the scattering of finite
size grains on the bed due to an impact has a wide distri-
bution of outcomes [2], sand transport in ripples is in-

herently a discrete stochastic process. Starting from a
flattened sand bed, well-formed wind ripples with a
characteristic spacing have been observed to develop by
coalescence and lateral organization of small sand bumps
[2,3].

One key behavior of ripples promoting this organiza-
tion is that smaller ripples travel faster than larger rip-
ples. Mean ripple translation speed is inversely related to
size. This is because ripple speed is the mean distance a
single grain in a ripple moves per unit time, or the ratio
of the sum of the distances traveled by grains in a ripple
per unit time (approximately proportional to the surface

area of the ripple exposed to impacts) to the number of
grains in the ripple (proportional to the volume of the rip-
ple). DiA'erences in ripple speed can lead to mergers be-
tween ripples and a consequent progressive increase in the
mean ripple size. This sequence of events has been repro-
duced in computer simulations based on the local physics
of grain-bed impacts only, suggesting that wind ripples
can form through self-organization [4-6].

Whereas previous models of wind ripple formation
have ignored this initial development [1,7,8], herein we
explore the hypothesis that mergers and ripple interac-
tions play a dominant role in the development of the scale
of ripples. Mergers occur when the depth of a trough
separating two ripples (or "ripple height" ), h (Fig. 2),
vanishes. The variable h changes by a discrete amount at
least as large as a sand grain diameter d as the result of a
single impact on the ripple crest. If mergers are impor-
tant, then the ripple height (and not the spacing of rip-
ples, as in previous treatments) is the primary variable.

Our goal is to understand how the evolution of ripple

FIG. 1. Wind ripples, with mean spacing 10 cm, at the Algo-
dones Dunes, California.

FIG. 2. Sketch of triangular ripple simulation model. Rip-
ples translate by removing a thin slice of sand of thickness d
from the upwind surface of a ripple and depositing it on the
downwind side. A merger occurs when the depth of a ripple
trough h vanishes.
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scale is related to the discrete stochastic interactions de-
scribed above. To this end we consider a simple model of
a ring composed of M circular segments, each with diam-
eter D (see Fig. 3). By designating N of these segments
as "heads, " a grouping of the segments into N entities
that we call "worms" is obtained. Worm i is comprised
of n; segments, and so has "size" n; and length x; =Dn;.
The worms move around the ring in real (continuous)
time according to the following stochastic rule, wherein P
is a positive constant: (P/n;)dt is the probability that the
head of worm i will jump exactly one segment forward
(clockwise) in the next infinitesimal time interval dt
(i =1, . . . , N).

The advancement of a worm's head increases its size by
1 and simultaneously decreases the size of the worm im-
mediately in front by 1. If the worm in front consists of
only a single segment (its head), then a merger between
the two worms occurs, and the number of worms on the
ring decreases by 1.

The tendency in this model is toward worms with size
equal to the average size n =M/N, because the head of a
shorter worm tends to move more frequently, which
lengthens the worm, whereas the head of a longer worm
tends to move less frequently, which promotes a shorten-
ing of the worm. Random fluctuations in the size of a
worm about the average n are intrinsic to this model; the
scale of these fluctuations will be characterized by a stan-
dard deviation o.. Extreme fluctuations result in worm
mergers and a concomitant irreversible increase in n.
The process by which mergers occur exclusively through
discrete fluctuations will be termed here stochastic merg-
ing.

Although this model does not include all of the physics
of wind ripples in three dimensions, it does have four im-
portant characteristics in common with wind ripples: (1)
an inverse dependence of mean translation speed on size,
(2) stochastic variations in size by a discrete amount, (3)
increase in mean size by mergers, and (4) a tendency to-
ward uniform size.

We are interested in the evolution of n and o..
Mathematically, the N worm system -is an (N —1)-
variate jump-type Markov process. An exact analytical
treatment for N & 2 would be very di%cult, so we make a
mean-field approximation: We focus on a single worm
and assume that its trailing worm always has size n. The

FIG. 3. Schematic for worm model. Worms are placed head
to tail on a ring. In a time interval dt, the head of worm i
moves forward one segment with probability (p/n;)dr, with

p ) 0 and n; the number of segments comprising the worm.

size of the considered worm then becomes an independent
univariate, "birth-death" Markov process with stepping
functions [9]

Ir(I;n, 0) = (2a)

0(n+ I —n) + W+ (n —I ) t (n —I;n, 0)
r (n;n, O) = ' ', (2b)

W n-
n~2,

where 0(n) is the Heaviside function. In essence, Eq.
(2a) follows from the fact that, in a passage from n to 0,
there will be exactly one transition 1 0. Equation (2b)
follows from the fact that, in a passage from n to 0, the
total number of n n —

1 transitions minus the total
number of n —

1 n transitions will be exactly 1 if n ~ n,
and exactly 0 if n ) n. By analytically iterating these re-
cursion relations [9,10], and then invoking Eqs. (1) and
making a series of approximations for n near n» 1 (the
details of which will be described elsewhere), we obtain

— n —(n —n) 2f~2n

r(n;n, O) = "
J2zn

(3)

The average time T(n, O) for the size of the worm to go
from n to 0 is the sum over t(n;n, O) from n =1 to ~.
That sum gives, to a good approximation,

T(n, O) =ne "/P .

The ratio t (n;n, 0)/T(n, 0) is the fraction of time that the
worm has size n. This ratio is approximately normal with
mean and variance n; thus, the standard deviation of the

worm size is a =Jn The unif.ormity of the worm pat-
tern, as measured by the smallness of the relative stan-

dard deviation cr/n =1/Jn, is therefore high in the case
n)) 1; this finding lends support to our mean-field approx-
imation.

The single-worm first passage time from n to 0 turns
out to be approximately exponentially distributed; thus,
the average time before the first of the N worms disap-
pears in a merger is approximately T(n, O)/N Because a.
merger causes the average worm size to increase by n/N
for N)) 1, the average rate of increase in n is

dn n/N

T(n, o)/N
—n

W+(n) =P/n, W (n) =P/n .

By definition, W~ (n)dt is the probability that the size of
the worm changes from its present value n to n+ 1 in the
next infinitesimal time interval dt.

The key to our analysis is the calculation of the aver-
age total time t(n;n, 0) that the worm's size has the value
n during a first passage from n to 0. By using the so-
called pedestrian method for calculating the mean first
passage time [9,10], one can derive the recursion relations
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Solving for n(t), and then recalling that a mean worm
size n implies a mean worm length x =Dn, we conclude
that the mean worm length evolves with time according
to

x(r) =Din(pr+e"' ' ) .

Exact Monte Carlo simulations of the worm model sug-
gest that the approximations leading to Eq. (6) give
reasonably accurate results for x ~ 5D.

The results of this analysis have two especially interest-
ing characteristics. First, even though x(t) in Eq. (6) in-
creases without bound, an observer might infer that x(~)
is finite, because the function ln(t) has the property that
its graph over any finite time interval 0 & t & t* appears
to be approaching a finite asymptote that lies slightly
above ln(t*). Therefore, a progressive increase in length
scale and an apparent attainment of an equilibrium
length scale both can arise from stochastic merging.

The second implication of our worm model analysis is
that neither a deterministic approach nor a continuum
approach can adequately describe the process that ulti-
mately is responsible for the growth of the worm pattern
scale, namely, mergers. A deterministic approach cannot
work because mergers arise exclusively from against-the-
odds fluctuations, and these are not treated in any ap-
proach that considers only average behavior. A continu-
um approach cannot work because the relative size of the

fluctuations, being o/n =1/ jn =MD/x, vanishes in the
continuum limit D/x 0. There are only two ways to
achieve the continuum limit of D being vanishingly small
compared to x(t) in Eq. (6): either take x(0)/D to be
infinitely large, in which case the passage of time beyond
r =0 will have no sensible efl'ect, or else take Pt to be
infinitely large, in which case the dynamical phase of the
problem is over. This contrasts with problems treatable
by continuum mechanics, such as fluid How, where the
macroscopic behavior is insensitive to the microscopic de-
tails. This insensitivity makes possible (for example)
such techniques as the lattice gas method, with "mole-
cules" much larger than in a natural fluid [11]. By con-
trast, in the worm model, x is directly proportional to D,
which has no macroscopic interpretation. Consequently,
scale separation between x and D is eAectively prevented
for systems that evolve for a practical period of time.
Pattern formation models based on partial diA'erential
equations [e.g. , 12, 13], even though some exhibit loga-
rithmic growth, do not share this property endemic to sto-
chastic merging.

We hypothesized earlier that the ripple height h can be
identified with the length of a worm x. Therefore, the
height (and the spacing, for a constant shape) of wind
ripples increases logarithmically with time with a coe%-
cient in front of the logarithm that is a small multiple of
the grain diameter d. This prediction of the worm model
can be tested by computer simulation and by the limited
number of physical observations available.

Two-dimensional computer simulations of ripples ap-
proximated as triangular in cross section were performed
in a periodic cell. The properties of this simulation algo-
rithm were chosen to incorporate basic features of natural
wind ripples, including ripple translation by stochastic
sand transport and translation speed which is an inverse
function of size, while keeping the model simple and its
results easily interpretable. In the simulations, sand is
transported and ripples are translated by removing a thin
slice of sand of thickness the sand grain diameter d from
the upwind surface of a ripple and depositing it on the
downwind side of the ripple (Fig. 2). The probability of
transport at each small time step is chosen to reproduce
the proper mean translation speed. Simulated ripples
merge when the trough between them disappears. The
asymptotic mean ripple height h is found to be consistent
with a logarithmic dependence on time, with coeScient
D —1d. In this simulation, h is approximately propor-
tional to the mean spacing, which is plotted in Fig. 4 for
comparison to observations of natural wind ripple devel-
opment. For small values of d/h, h is found to remain
constant over a long period of time; i.e., no mergers
occur. A simulation in three dimensions of ripple forma-
tion where sand is transported as individual grains (Lan-
dry and Werner, in preparation) also appears to be
asymptotically consistent with the predictions of the sim-
ple worm model, with D —4d (Fig. 4). The values of the
coefticient of the logarithm D & d observed may be asso-
ciated with the eAect of the greater number of degrees of
freedom in three dimensions.

Physical measurements of wind ripple spacing also lend
support to the application of the worm model to wind rip-
ple formation. First, data on ripple evolution in a wind
tunnel [4] and in the field [2,5] are consistent (within un-
certainties) with asymptotic logarithmic increase in spac-
ing with D ranging from ld to 6d (Fig. 4). Second, wind
ripple spacing has been observed to scale roughly with
grain diameter [3]. Continuum models of ripples [1,7,8]
do not predict this proportionality between grain diame-
ter and ripple crest spacing and height. Third, the crest-
to-trough height of well-developed ripples typically is on
the order of 10-20 grain diameters, in agreement with
the prediction that scale separation is lacking.

In summary, the one-dimensional worm model present-
ed here reproduces the main features observed in the de-
velopment of wind ripples: increase in size through
mergers, the appearance of size stabilization by slow
growth, and a size approximately sca1ed by the sand grain
diameter. Although not incorporating all of the complex-
ities of wind ripple behavior, the model may capture the
essence of their dynamics, a hypothesis that further simu-
lations and experiments can test. Recent observations
and computer simulations point to self-organization via
mergers for other landforms as well [14,15]. The predict-
ed implications of our worm model for landforms of this
type are twofold: Growth and stabilization of charac-
teristic scale can be explained by the same mechanism,
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FIG. 4. Wind ripple spacing vs time. Spacing increase is consistent (within uncertainties) with asymptotic logarithmic depen-

dence on time as predicted by the worm model. Field experiment conducted under variable wind conditions [2,5]; wind tunnel experi-
ments performed with two values of the aerodynamical friction speed u* [4]. Estimated uncertainties in ripple spacing: triangular

ripple simulation, & 3%; grain-by-grain simulations, & 10%; field experiment, 10%-15%;wind tunnel experiments, uncertainties not

provided. Inferred values of logarithmic slope of mean height vs time in terms of mean grain diameter d, assuming a ratio of spacing
to ripple height of 10 for the physical measurements: triangle simulation, D =1d; grain-by-grain simulation, D =4d; field experiment,
D =6d; wind tunnel experiment, u =30 cm/s, D = ld; wind tunnel experiment, u* =41 cm/s, D =4d.

and landform scale cannot be derived from a determinis-
tic or a spatial continuum approach. The role of stochas-
tic merging in other physical systems, such as underwater
ripples and dunes and atomic-scale topographic patterns
[16], remains to be investigated.

We are grateful to P. K. Haff for inventing an early
version of the worm model, and for many conversations
and helpful comments on the manuscript. This work was

supported by the Office of Naval Research, Coastal Sci-
ences [N00014-92-J-1446] (to SIO), the Office of Naval
Technology (to NAWC) and the Research Department,
Naval Air Warfare Center.

[1] R. A. Bagnold, The Physics of Blown Sand and Desert
Dunes (Chapman and Hall, London, 1954).

[2] B. T. Werner, Ph. D. thesis, California Institute of Tech-
nology, Pasadena, 1987.

[3] R. P. Sharp, J. Geology 71, 617 (1963).

[4] R. S. Anderson, Earth Science Reviews 29, 77 (1990).
[5] B. T. Werner, in Proceedings of the Geophysics Fluid

Dynamics Summer School (Woods Hole, Massachusetts,
1992), p. 167.

[6] S. Forrest and P. K. HaA, Science 255, 1240 (1992).
[7] T. von Karman, in Collected Work of Theodore con Kar

man (Butterworth, London, 1956), Vol. 5, p. 62.
[8] R. S. Anderson, Sedimentology 34, 943 (1987).
[9] D. T. Gillespie, Markoc Processes: An Introduction for

Physical Scientists (Academic Press, San Diego, 1992)
Chap. 6 and Sec. 6.6.A.

[10] D. T. Gillespie, J. Chem. Phys. 74, 5295 (1981).
[11]U. Frisch et al. , Complex Systems 1, 649 (1987).
[12] T. M. Rodgers, K. R. Elder, and R. C. Desai, Phys. Rev.

B 37, 9638 (1988).
[13] C. Elphick, O. Regev, and E. A. Spiegel, Mon. Not. R.

Astron. Soc. 250, 617 (1991).
[14] B. T. Werner and B. Hallet, Nature (London) 361, 142

(1993).
[15] G. Kocurek, M. Townsley, E. Yeh, K. Havholm, and M.

L. Sweet, J. Sed. Petrology 62, 622 (1992).
[16] G. S. Bales, R. Bruinsma, E. Eklund, R. P. U. Karunasiri,

J. Rudnick, and A. Zangwill, Science 249, 264 (1990).

3233




