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Hysteresis Loop Critical Exponents in 6 —e Dimensions
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The hysteresis loop in the zero-temperature random-field Ising model exhibits a critical point as
the width of the disorder increases. Above six dimensions, the critical exponents of this transition,
where the "infinite avalanche" first disappears, are described by mean-field theory. We expand the
critical exponents about mean-field theory, in 6 —t' dimensions, to first order in e, Despite e = 3,
the values obtained agree reasonably well with the numerical values in three dimensions.

PACS numbers: 75.60.Ej, 64.60.Ak, 81.30.Kf

where the + refers to the sign of r.
We use a soft-spin version of the random field Ising

model, whose energy at a given spin configuration (s,) is

'8 = —) J,~s, ss —) f,s, + Hs, —V(s, ), (2)

with the linear cusp potential V(s, ) defined [2] through

(k/2)(s, + 1)2 for s ( 0,
(k/2)(s, —1)2 f ) 0.

In a previous paper [1], we modeled hysteresis in mag-
netic and martensitic systems using the random-field
Ising model at zero temperature. The model exhibited
two features characteristic of these systems: the return-
point memory effect and avalanche-generated noise. (The
noise is called Barkhausen noise in magnetic systems and
acoustic emission in martensites. ) We also discovered
a critical point, separating smooth hysteresis loops at
large disorder where all avalanches are finite, from dis-
continuous hysteresis loops at small disorder where one
avalanche turns over a fraction of the whole system.

Here we study this critical point in an expansion about
mean-field theory. Figure l(a) shows a schematic of the
phase diagram for our model defined by Eq. (2) below.
The vertical axis H is the external field. The horizontal
axis R is the width of the probability distribution of the
random fields f, acting on each spin. The bold line repre-
sents the location H, (R) at which the infinite avalanche
occurs, when the field H(t) is adiabatically increasing
from an initial state where all spins were pointing down.
At small disorder, the first spin to flip easily pushes
over its neighbors, and the transition happens in one
burst (the infinite avalanche). At large enough disorder,
the coupling between spins becomes negligible, and most
spins flip by themselves: no infinite avalanche occurs. At
a special value of the randomness R = R, the infinite
avalanche disappears. We find a critical point with two
relevant variables r—:(R, —R)/R, and h—:H —H, (R,)
[1]. At this point we find a universal scaling law for the
magnetization m = M —M, (R,)

Here, k ) 0 is the local curvature of the potential. The
spins are coupled ferromagnetically by a nearest neigh-
bor interaction J,s = J/z ) 0, z being the coordination
number of the lattice. We demand that k/J ) 1 to en-
sure stability of the system. H is a homogeneous external
magnetic field; the f, are randomly chosen from a Gaus-
sian distribution p(f) of standard deviation R. We study
this system at zero temperature. It turns out for given H
and f, that there are many metastable states; which one
of these the system picks depends entirely on its history
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FIG. 1. Phase diagram and flows (schematic). (a) The ver-
tical axis is the external field H, responsible for pulling the
system from down to up. The horizontal axis is the width of
the random-field distribution R. The bold line is H, (R), the
location of the infinite avalanche (assuming an initial con-
dition with all spins down and a slowly increasing external
field). The critical point we study is the end point of the infi-
nite avalanche line (R„H,(R,)). Using the analogy with the
Ising model (see text) we also show the RG flows around the
critical point. Here we ignore the RG motion of the critical
point itself: equivalently, the figure can represent a section
through the critical fixed point tangent to the two unstable
eigenvectors (labeled h and r). Two systems on the same RG
trajectory (dashed thin lines) have the same long-wavelength
properties (correlation functions, etc. ) except for an over-
all change in length scale, leading to the scaling collapse of
Eq. (1). The r eigendirection to the left extends along the
infinite avalanche line; to the right, we speculate that it lies
along the percolation threshold for up spins (see Ref. [9]). (b)
O(e) RG flows below 6 dimensions in the (y, u) plane (see
text). Linearization around the Wilson-Fisher (WF) fixed
point yields the exponents given to O(e) in the table. In the
vicinity of the repulsive u = 0 = g (MFT) fixed points one
obtains the old mean-Beld exponents.
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6'('8)
B,s, (t) =— (3)

where we have absorbed the friction constant into the
definition of the time t.

(a) Formalism: We use the formalism of Martin, Sig-
gia, and Rose [3] to rewrite the problem as a path integral
for a generating functional Z, and then expand this func-
tional about mean-field theory. This is done in analogy
with the calculation for charge density waves (CDWs)
by Narayan and Fisher [4,5]. We impose the dynamical
equation (3) on the path integral at each time t by intro-
ducing it as a 6-function constraint using the well-known
identity 27r6(f(s)) = j e"~&'wads:

(i.e. , the way the external magnetic field H was varied at
earlier times). We will study the history of a monotoni-
cally but adiabatically increasing external magnetic field.
We impose purely relaxational dynamics, as defined by
the equation of motion

model. J[s] is a functional Jacobian, chosen such that
Z is unity, independent of the fz T. his allows us to av-
erage over the disorder without fancy tricks (like replica
theory).

We choose a particular regularization for the time in-
tegral. The simplest choice [4] is to require a force at
time t to have an eKect only after some time bt. That
leaves us with J[s] = 1. We now do an average over the
random fields f, , denoted by ()y, leading to the averaged
generating functional

Z = [ds] [ds] (exp(S)) y.

To expand about mean-field theory, we need change
variables from s, and sz to the local fields

(1/ J) Q& J~tst at the sites (fiuctuations about whose

mean values we shall study). We do so by introducing
another auxiliary field gz, and absorb a factor i in its
definition, so

where

Z = [ds] [ds] J[s]exp(S),

S = — dt ) 8, (t) (B,B, (t) —) J, ,s,

6U)
H —f, +-

bs~ ) (5)

Z = [dry][dr]] Z, [rl, , j,]

x exp ( — dt) r), (t) ) J q Jar(t) &, (7)),
where Z~ [rl~, j~] is a local functional

Derivatives of Z can be used to calculate the response
functions and dynamic correlation functions for our

Z~ [q~, rj~] = [ds] [ds] (exp S~ )y,

1 bV
S, = — dt ~ ) Jq, (t)s, (t) + is, (t) B,s, (t) —Jq, —H —f, +

bs~

We will now expand about the mean-field solution rIp [the local field configuration about which the logarithm of the
integrand in Eq. (7) is stationary]. Shifting the definition of q to rl —rip so that (rt) y

= 0 leaves one with the generating
functional

with an effective action

Z = [dil] [dr)] exp(S) (10)

dti dtm+numn(ti, . . . , tm+n)ng (ti) rig (tm)

xn (t +i) 1 (t + ).
Here, the u „are the derivatives of ln Z, with respect to

]
the fields j~ and g~, and thus are equal to the local, con-
nected responses and correlations in mean-field theory:

bV
B,s, (t) = J(q, ), (t) + H+ f, — + J~(t)

bs~ t
(13)

t9

BE(t +1)
t9

(s(ti) s(t ))y, i,'B«m+n

Local [4] (l) means that we do not vary the local field

(qp)& in the mean-field equation

when we perturb with the infinitesimal force Je(t). The
force Je(t) is only allowed to increase with time, consis-
tent with the history we have chosen. [For example, for
ui i(t, t') we add a force Je O(t —t, ) in Eq. (13), with

O(t —t, ) being the step function, and take the derivative
of (s(t)) y i, with respect to ~ and t, .]
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(b) Renormalization group (RG) treatment: We con-
sider the rfrf term in the action (involving J t and u), q) as
the propagator in the RG treatment. Now we take some
long-wavelength and low-frequency limits in analogy to
[4,5]. For small wave vectors J (q) 1/J + J2q, and
we rescale to give JJ2 ——1. We take the low-frequency
part of the propagator, by Fourier transforming the jg
term in time, expanding to first order in w, and Fourier
transforming back. The propagator (the rlrf term in the
action) is thus (after rescaling)

d"q dhrf( q, t)[——Bg+ q —g '/J]rI(q, t). (14)

The bare value of y is the static response, calculated in
mean-field theory, to a monotonically increasing external
magnetic field

y = 1/[2J p( JM ——H+ k) —J(k —J)/k], (15)

where M is the magnetization at the external magnetic
field H.

We use the Wilson-Fisher renormalization group trans-
formation: In each step we integrate out modes of all fre-
quencies and wave vectors within an infinitesimal wave
vector shell [4]. We rescale through z = bx', t = b't'
We choose the rescaling of the fields such that the q
term of the propagator and the u2 p term remain un-
changed, since to first order in ~ they have no loop cor-
rections. Thus g = b & 'rI' and rl = b &+ rf' [5]. With-
out loop corrections this implies z = 2. Keeping in
mind that the o)/o)e(t) in Eq. (12) rescale like b ~, we
arrive at u' = 6[ (m+n)+ ]" + umn. To lowest order
in e = d, —d, the only relevant terms are those which do
not How to zero under rescaling at the upper critical di-
mension d, (we will see that d, = 6 for our critical point).
uq p is trivially zero because we expand around the sta-
tionary point. The ui 2 term, in the static limit, has bare
value tu = 2J p'(—JM —H+k)—: it becomes relevant for
d & 8. The uq s term starts at u = 2J p" ( JM ——H+ k)
in the static limit, and is relevant for d & 6. Finally,
the u2 p term stays marginal. In the static limit that we
consider u2 p can be treated as a constant. We are left
with the effective action

«e-q t)[-~ +"—~-'/J]. (q, t)+) (1/2) «;(t)[;(t)]' +(1/6) «', (t)[;(t)]'-

+(1/2) dt). d4 rl&(t) )rl&(t2)u2 p(t), t2)

Our e expansion can be applied not only to the critical
[point (R„H,(R,)), but to the entire line H, (R) at which

the infinite avalanche occurs. In mean-field theory, the
approach to this line is continuous, with a power-law di-
vergence of the susceptibility y and precursor avalanches
of all scales. Above 8 dimensions the action is purely
quadratic at the fixed point, and the infinite avalanche
line [where 1/y = 0 and u) = 2J2p'( JM——H+k—) g 0]
presumably remains critical. For d = 8 —e, Fig. 2(a)
shows the correction to vertex m to first order in ~. The
incoming lines at a vertex stand for g operators, and the
outgoing lines are g operators. The low-frequency form of
the propagator is approximately b(t —t/) [4] but we have
to observe causality; an example of a diagram forbidden
by causality is given in Fig. 2(b). Applying the usual
approximations [6], we obtain for the recursion relation
for u/ to O(e):

(d)

(a) (b)

(c)

+2,0

rrr'/2 = (rt r2+ )(rrr/2 4- (u2 rr/2)(rrr/2) 8/(4rr)

42(2' —2 '/~) ')
Ajb

Writing bf "~2+4) = bf7~& = 1+(e/2) ln b and performing
the integral over the momentum shell A/b & q & A leaves
us with the recursion relation:
u)'/2 = u)/2+ (u//2)[e/2+ uq p(u)/2) 4/(47r) lnb] . (18)
Since u2 p ) 0 this means that for ~ ) 0 there are only
two fixed points with tu' = te: either to = 0, which we
will discuss in the next paragraph, or m = oo. We see
3224

FIG. 2. Feynman diagrams. The perturbative expansion
about mean-field theory is presented here by Feynman dia-
grams. (a) The correction to O(e) to the vertex u) in an ex-
pansion about 8 dimensions, see Eq. (18) in the text. (b) An
example of a diagram forbidden by causality. (c) The relevant
corrections to first order in e = 6 —Gt for the constant part

/ J in the propagator and for u. Using the same techniques
that lead to Eq. (18) we find the following recursion rela-
tions: (y '/J)' = b [y '/J + u2, ou/(42r) A (1 —1/b )/4
+u2, ou/(42r) (g /J) Inb] and u' = u + u[e + 3/(42r)
xu2 ou] lnb u2, o does .not get any loop corrections of O(e).
(d) An example of a correction to the vertex u2, 2 which con-
tributes only to O(e ), which is not present in the regular
Ising model (or the thermal random-field Ising model).
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TABLE I. Universal exponents for critical behavior in hys-
teresis loops. The exponents P and b tell how the magne-
tization scales with r and h, respectively, Eq. (1). v is the
correlation length exponent, measured (numerically) using fi-
nite-size scaling.

Exponents e expansion
with e = d —6, at e = 3

2 —e/3 = 1
05 —e/6=0

1.5 + O(e ) = 1.5
3+a=6

Simulation [1]
in 3 dimensions

1.0 + 0.1
0.17+ 0.07
2.0 + 0.3
(around 12)

that under the recursion relation (18) any system that
has a bare value tv g 0 when I/y = 0 will flow to the
fixed point m = oo. We interpret this as indication that
the transition is a first-order transition for d ( 8. Indeed,
in three dimensions the simulation showed a first-order
transition without critical fluctuations for these systems.

The critical point we are interested in here is the fixed
point where m = 0. At d = 6 the first nonquadratic
contribution u becomes relevant; i.e. , the upper critical
dimension [7] for the critical end point is 6. We now com-
pute, to O(e), the corrections to the recursion relations.
The relevant diagrams are shown in Fig. 2(c). Figure l(b)
shows the corresponding RG flows in the (y i, u) plane.

The loop corrections look very similar to the loop cor-
rections in the usual Ising model in d —2 dimensions. In
fact, to O(e), they are the same. This can be seen either
by direct computation (see caption Fig. 2) or by noticing
that the Feynman rules for our diagrams are the same as
those for the Bnite-temperature random-Beld Ising model
[8] [except that we have extra vertices which are irrele-
vant to O(e)]. This latter model has been mapped to all
orders in t onto the regular Ising model, using supersym-
metry and other arguments. This analogy tells us that
to O(e) we get the same RG flows (Fig. 1) and the same
corrections to our exponents as one Bnds in the usual
Ising model in d —2 dimensions [6] (see Table I).

This mapping does not extend to the next (e2) term
in the series: Fig. 2(d) shows a correction of O(e ) to
the vertex uq2, which then contributes in O(e ) to the
propagator. This is comforting, as otherwise the criti-
cal properties of our model in d = 3 would have com-
pletely mapped onto the d = 1 thermal (nonrandom)
Ising model, which has no finite-temperature phase tran-
sition at all. Indeed, this was a substantive concern for
the thermal random-field Ising model, which despite the
correspondence above was proven to have a transition
in d = 3: the e expansion for that model summed over
physically incorrect metastable states. By controlling the
history of the external field (as in [4,5]), we have been
careful to specify the particular metastable state in our
calculations.

The ~ expansion for our model is technically much sim-
pler than that for other disordered extended dynamical
systems: e.g. , interface [9] or charge-density-wave [4] de-
pinning, where an infinite family of relevant operators
made necessary a functional renormalization group. The
relative ease of our calculation may make possible further
extensions: calculating the corrections to the equations
of state, calculating the history-dependent critical behav-
ior, or addressing the avalanche distributions.
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