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Relationship between the Coulomb Integral U and the Stoner Parameter I
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Orbital Hartree-Fock and the local spin density approximations to exchange are compared. The
self-exchange integrals calculated from the Hartree-Fock approximation are far larger than those
calculated from the local spin density approximation. We suggest that, in metals where the exchange
integrals are well shielded, a suitable functional for exchange may be obtained by scaling the orbital
Hartree-Fock approximation to the local spin density approximation while retaining the stronger
orbital dependence. Application to Fe and US produces good agreement with measurements.
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Spin density functional theory, in particular the lo-
cal spin density approximation (LSDA), plays a fun-
damental role in the modern theory of itinerant mag-
netism in metals [1]. In this theory moment formation
is driven by the spin polarization energy, ELSPA. In
a much used, and often quite good approximation [2],
ELSPA = — 157, JESPAmymy, where m; is the Ith par-
tial magnetic moment and Jj7SPA are the LSDA exchange
interactions between shells / and I’. Since the spin up and
spin down energy bands are split more or less uniformly in
LSDA, as in the older but more empirical Stoner theory—
Is—a linear combination of the matrix elements J5SPA,
is conventionally referred to as the Stoner parameter [3].

At least equally important is the theory of moment
formation in highly correlated electron metals or im-
purities in metals. The formation of local moments is
most often described in terms of Hubbard [4] or Ander-
son [5] models in which the numerical sophistication of
self-consistent energy band calculations in LSDA is re-
placed by a more advanced model containing parameters
that are somewhat difficult to calculate [6]. Nevertheless
in the Hartree-Fock approximation (HFA) to the Ander-
son model, for example, the difference in energy between
magnetic and nonmagnetic states contains a spin polar-
ization energy which may be written Eéqp = —%U m?=0
for an s band where here U is the full Coulomb inte-
gral and typically an order of magnitude greater than
Is. The large difference in the magnitudes of U and I
has led to less consternation than it should because it
is widely believed [7] that E&: is the self-exchange en-
ergy gained in moment formation whereas Is contains
only interelectron—sometimes referred to as Hund'’s first
rule—exchange. The reality is more subtle since ESSPA
contains both self-electronic and interelectronic exchange
energies [8].

An enlightening way to compare LSDA with HFA is to
consider, schematically, the hydrogen atom. In the sup-
posed paramagnetic atom half of an electron is placed
in each of the £ spin states. In terms of orbital HFA
there are exchange interactions between each half of an
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electron in the paramagnetic case leading to an exchange
0

energy of —%—-, in terms of the Slater integral, F°, which

in this case is U. In the spin polarized case the exchange

energy of one electron with itself is _E;l and the spin po-

larization energy is —-i—o. Therefore the total exchange

. . F° s

energy in the polarized case, —%-, provides the exact
self-interaction correction to the classical Coulomb en-
ergy and the spin polarization energy equals the exchange
energy in the paramagnetic state (both —FTO)——a feature
of orbital HFA which arises from the fact that the ex-
change energy is quadratic in the total numbers of paral-
lel spins. In practice, we calculate the Coulomb energy in
a self-consistent LSDA calculation to be 0.55 Ry, which
corresponds to U = 1.1 Ry and the calculated Slater ex-
change integral is F°=1.14 Ry [9].

In order to compare LSDA with HFA we have made
calculations for a hydrogen atom with LSDA to exchange
but with correlation omitted. In the paramagnetic state
the total energy is calculated to be —0.813 Ry of which
—0.376 Ry is exchange energy. Spin polarized hygrogen
has a total energy of —0.914 Ry of which the exchange
energy is —0.506 Ry and the self-interaction is not quite
complete. More interesting, however, is that our cal-
culated total exchange energies in HFA and LSDA are
approximately equal but the relative exchange energies
in the paramagnetic and spin polarized cases are quite
different. Even without explicit inclusion of correlation
energy the spin polarization energy in LSDA of 0.101
Ry is far smaller than the 0.275 Ry in HFA and the ex-
change energy in the paramagnetic state is correspond-
ingly larger. The reason is that the spherical exchange
hole which travels with the electron has a radius pro-
portional to the cube root of the inverse density [10] and
this leads to an exchange energy proportional to the den-
sity to the power of 4/3 which is much weaker than the
quadratic dependence of HFA. Therefore the tendency to
moment formation is suppressed in LSDA compared with
HFA even before the correlation energy is explicitly in-
troduced. In the derivation of the exchange functional in
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LSDA the self-interaction is not explicitly omitted since
the exchange energy is just the HFA exchange energy of
a homogeneous electron gas, Eex = —€2Vk} /473, How-
ever, that LSDA implicitly includes shielding corrections
seems to us most likely. Clearly, in the case of hydrogen,
the spin polarization energy is entirely self-exchange en-
ergy and should complete the self-interaction correction
(SIC) [11].

When correlation energy is added to the functional [12]
the total energy of the paramagnetic state of hydrogen
calculated to be —0.924 Ry of which —0.500 Ry is ex-
change energy. The total energy of the spin polarized
state is —0.993 Ry of which the exchange energy is —0.591
Ry [13]. The self-interaction correction is very nearly
complete [11] and the spin polarization energy has been
further reduced to 0.069 Ry. This comparison of LSDA
with orbital HFA shows that in the spin polarization en-
ergy U = I in principle, but that the calculated integrals
are F° = 1.14 Ry and I = 0.22 Ry from the LSDA inte-
gral or 0.28 Ry from the spin polarization energy. Here
lies the root of the problem. The integral entering an
orbital theory and the same integral evaluated by ap-
proximating locally by a homogeneous electron gas at
the same density are not remotely similar.

The original theory of moment formation in itinerant
electron metals, by Slater [14], used orbital HFA to derive
an expression for the spin polarization energy of an open
shell, ESp, of the same form as—but predating—EXSPA
with Ig replaced by the Slater exchange parameter, f, a
linear combination of atomic Slater integrals, F*, with
the largest Coulomb integral, F° excluded. To explain
how this came about we write the usual expression for
the average exchange energy of unfilled valence shells in
the usual way,

1

B === 37 (im, U |glt'm, im)num e Som,sy

lm,l'm’ (1)

where g is the Coulomb interaction, Im labels the orbitals
and in an extended system, n;,,—which are local occupa-
tion numbers—are in general nonintegral. This expres-
sion is evaluated in terms of Slater integrals through a
multipole expansion of the Coulomb interaction. The
term Im = I'm’ is included in the sum but for inte-
gral occupation numbers the first term in the expansion,
containing F°, exactly cancels the spherical part of the
direct Coulomb interaction [14,15]. Slater therefore re-
moved this contribution but evaluated higher multipole
contributions to the exchange interaction using noninte-
gral orbital occupation numbers, an inconsistency which
has been remarked upon by several authors [5,16,17].
The correct expression for the spin polarization energy,
including intershell exchange, is easily derived under
the assumption that the spin orbitals are equally pop-
ulated [14] with occupation numbers nif, = ¢ /(2! + 1),
where q,:t is the number of electrons with ! character and
spin =+,

1
S _
ESp = ~1 ;Vwmlmy. (2)

The exchange integrals V;, are given in terms of radial
Slater exchange integrals Gﬁ, by

Vir = 'k 2G’c 3
i = ; 000 1) ( )

where the term k = 0 is now included, (---) is a Wigner
37 symbol, and Gy = Fj» when !l =1’ When!l=1'=0
Egs. (2) and (3) reduce to E§p = —1F°m? and F° =
Jura = U. More generally, but with F° > F* for k > 0
the 35 symbol (40) = 1/v2I+ 1 and Jura = U/(2l + 1).
This relation is implicit in the work of Brandow [18] on
Mott insulating transition metal compounds where the
denominator is 5 for d states, but we are not aware that
the more general form has been derived.

Despite the success of LSDA for metals the need for
improvements in applications to narrow band metals has
become evident. Recent extensions include orbital po-
larization [19] and self-interaction correction [11]. These
extensions have in common that the energies of the in-
dividual orbitals depend upon their occupation rather
than the total spin density as in LSDA. However, the ex-
change interactions in these orbital theories are expressed
in terms of Slater exchange integrals which, if all are
correctly included, yield exchange splittings that are too
large in itinerant electron metals. It is notable, however,
that if a shielded value for U is used instead of the bare
Coulomb integral, the relation Jura = U/(2l + 1) yields
an exchange interaction close to the the LSDA exchange
integral. For example, we calculate for the 5f states of a
uranium atom that F® = U ~ 1 Ry but that if the shield-
ing of the 5f states by 6d states is included [17,20] U is
reduced to between 2 and 3 eV and U/7 is about 0.3-0.4
eV compared with the LSDA exchange integral of 0.4 eV.
Alternatively, shielded values of U may be deduced from
experiments on metals [21] and again, upon dividing by
2l + 1, approximate agreement with the LSDA exchange
integrals is obtained.

The formal exquivalence of U and I discussed above
suggests a way to arrive at a theory of exchange orbital
polarization which reduces to LSDA in the limit when
each valence shell has equally populated orbitals. When
the restriction to equal occupation used to arrive at Eq.
(3) is removed the spin polarization energy becomes

1 1
ESP = '—Z Z‘/ll’mlml' - Z Z Vimtrm: 6mymémy my
Ly Im,l'!m’
(4)

where

Wml’m’ = Z[C(lmv l,ml)]2G;cl" (5)
k

C(lm;l'm’) is a Gaunt coefficient and émy, = myn —
my/(2l + 1) is the difference between the actual occupa-
tion and the average for a shell. Now if, when the or-
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bital populations are equal, the exchange integrals from
orbital HFA, V};s, are formally equivalent to the LSDA
exchange integrals, Jy;/, Eq. (5) may be scaled using Eq.
(3), whence

1 1 ~
Esp = 1 ZJu'mzmz' 1 Z Vimrm mimémym: ,

LU Im,l'm’
(6)
where
Vimirm: = Aimurme Ji 08 (7)
and
C(Im; I'm")]2GE,
dlml’m’ — Zk[ ( )] 15 (8)

Tk

>k (000)*Gli
The spin polarization energy obtained from Eq. (6) de-
pends upon the occupation of the individual orbitals, and

the energies of the orbitals are shifted by amounts given
by

1
Seit = F5 Z JpSPA (mz' + Zdlmz'm'5ml'm') - (9)
14 m’

Equations (6) and (8) are similar in form to the Wigner-
Eckart theorem with the angular dependence contained
in dimyme, and the dynamics (including any effective
screening) being in the “reduced matrix element” Jy.
Clearly Eq. (6) reduces to LSDA when ém;m, = 0.

The approximation to an energy functional introduced
here is intended to be suitable for metals and metallic
compounds when LSDA is itself a reasonable approxima-
tion but requires correction for orbital effects not present
in the homogeneous electron gas. It is not intended for
Mott-Hubbard insulators where U may well be less well
shielded [17,18,22]. We have applied the present approx-
imation in self-consistent calculations for Fe and US and
calculated their spin and orbital moments. The results
are shown in Table I. The former metal is important be-
cause its magnetic anisotropy and orbital moment have
been the subject of several recent detailed studies [19,23].
In this case spin and orbital moments of 2.22up and
0.04up, respectively, are obtained in LSDA. The mo-
ments are 2.22up and 0.06up in an orbital polarization
scheme designed to incorporate the Hund’s second rule
in the electron gas [19]. In the present approximation
the calculated orbital moment is increased (Table I), is
greater than measured, but acceptable.

TABLE I. The calculated spin and orbital magnetic mo-
ments, in g, of US (5f contribution) and Fe using the present
scheme. The experimental data are from Ref. [26].

Fe US
us Theory 2.13 1.51
KL Theory 0.13 —3.12
us Exp. 2.13 1.31
UL Exp. 0.09 -3.0
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The compound US is a notoriously difficult case, ev-
idently having itinerant 5f electrons but possessing an
orbital moment larger than the spin moment [24]. In
narrow band actinide compounds LSDA is severely tested
and previous studies [19] have shown that although large
orbital moments are induced by spin-orbit interaction
(us = 2.10pup and pr = —3.2up for the 5f states in
US) they are not large enough. With orbital polariza-
tion [19] the calculated moments were us = 2.2up and
ur = —4.0up—leading to a considerable improvement
in the calculated total moment. However, analysis of the
magnetic form factor suggests that both the calculated
spin and orbital moments were too large. The present ap-
proximation produces a considerable improvement (Ta-
ble I), bringing both total magnetic moment and indi-
vidual contributions to the magnetic moment into agree-
ment with experiment. In particular, the reduction in the
spin component of the moment with retention of a large
orbital component is a feature demanded by analysis of
recent experiments on uranium compounds [25].
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