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Crossover from BCS to Bose Superconductivity:
Transition Temperature and Time-Dependent Ginzburg-Landau Theory
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We use functional integral formulation to study the finite temperature crossover from cooperative
Cooper pairing to independent bound state formation and condensation, We show the inadequacy of
mean field results for normal state properties obtained at the saddle point level as the coupling increases.
The importance of quantum (temporal) fluctuations is pointed out and an interpolation scheme for T, is
derived from this point of view. The time-dependent Ginzburg-Landau (TDGL) equation near T, is
shown to describe a damped mode in the BCS limit, and a propagating one in the Bose limit. A singular
point is identified at intermediate coupling where a simple TDGL description fails.

PACS numbers: 74.20.—z, 67.40.—w, 74.40.+k, 74.72.—h

The problem of the crossover [1,2] from BCS theory
with cooperative Cooper pairing to the formation and
condensation of composite bosons has attracted consider-
able attention [3-5] after the discovery of the high-T, su-

perconductors. Recently numerical simulations have
clearly shown [4] that the intermediate coupling, cross-
over region displays highly anomalous correlations ("spin
gap" behavior) in a degenerate Fermi system above T,
More generally, the crossover question is also of interest
for several other problems: excitonic condensates, super-
conductor-insulator transitions, and itinerant versus
local-moment magnetism.

In this paper we study a continuum model of fermions
with attractive interactions. We show that the saddle
point approximation misses the qualitative physics of the
intermediate and strong coupling normal state. The bo-
sonic degrees of freedom, which become increasingly im-

portant with growing attraction, can only be adequately
described by retaining the full frequency dependence of
fluctuations about the normal state saddle point.

We first study the transition temperature. We show
that a saddle point estimate To gives increasingly in-

correct results with coupling. In the strong coupling Bose
limit To is found to be related to the pair dissociation
scale rather than the T, (« To) at which coherence is es-
tablished. Inclusion of Gaussian fluctuations about the
trivial saddle point is shown to lead to the Nozieres-
Schmitt-Rink interpolation for T„which has a sensible
strong coupling limit. To further elucidate the role of
temporal fluctuations, we study the evolution of the
time-dependent Ginzburg-Landau (TDGL) theory. In
the BCS regime a damped mode with a small (order
T,/eF) propagating part is found, while in the Bose limit
the mode is undamped. These two regimes are separated
by a singular point at intermediate coupling where an en-

ergy scale, the chemical potential at T„vanishes, and
even a linearized TDGL description fails. Finally, we

briefly describe the evolution of the collective modes at

T=0 with increasing coupling. Details will be given else-
where [6].

We study fermions in a unit volume in 3D with a Ham-
iltonian density

p2 —P tlt (x)
2m

—
gtir1 (x) yl (x) yl (x) tir1 (x) .

H=tlr (x)

The chemical potential p fixes the average density n. The
partition function Z, at a temperature P, is written as
an imaginary time functional integral [7] with action
5 =fg dr fdx [y (x)8, tlr (x) +H], where x = (x, r ) and
6 =ka = 1. Introducing the usual Hubbard-Stratonovich
field A(x, r), which couples to tittlt, and integrating out
the fermions we obtain Z =fDADA exp( —S,tr[h, a] ).
The eA'ective action

5 ff[A(x)] =— dr ~ dx Ih(x) I

—Tr lnG ' [A(x)]
g 40

(I)
is written in terms of the (inverse) Nambu propagator

G '(x,x') =

p2—Q, + +p
2m

Z(x)
p2

r)r p
2m

x 8(x —x'),
and the trace in (1) is over space, imaginary time, and
Nambu indices.

Below a certain temperature, which we denote by To
(rather than T, for reasons which will become clear
soon), the trivial saddle point A=O becomes unstable.
This is defined by setting h, =O in saddle point condition
85,tr/65=0. One then obtains the familiar gap equation
1/g =gktanh(gg/2TD)/2(t„where gt, =sk —p with
sk = Ik I

'/2m.
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where a, now plays the role of the coupling constant [8].
To solve the above equation for Tp we need to first

determine the chemical potential p, as a function of the
coupling and temperature, using % = —tl 0/Bp. The sad-
dle point approximation for the thermodynamic potential,
Ao =S,ir[A =0]/P, leads to the number equation

A BCS type cutoff cannot be used to access the strong
coupling Bose regime. We thus use the s-wave scattering
length a„defined by the low energy limit of the two-body
problem in vacuum via m/4ira, = —1/g+gk(2sk) ', to
regulate the ultraviolet divergence in the gap equation.
Eliminating the coupling g between these two equations
we obtain i( ) g nk nk+q I

k &ril gk (k+q 2&k

P1

4za,

with i qi =i 21m/p and nk =nF ((k), the Fermi occupation
The resulting expression for the thermodynamic potential
& =Go —P 'gq ~q, lnl"(q, iqi) is identical to the diagram-
matic result of Nosieres and Schmitt-Rink (NSR) [2].
Following NSR one can rewrite 0 in terms of a phase
shift defined by I"(q, ro ~ i0) =~I (q, ro) ~exp[ ~ i8(q, ro)].
The number equation incorporating the eAects of Gauss-
ian fluctuations is given by

as a function of coupling, we look at Gaussian fluctua-
tions about the trivial saddle point h(x, r ) =0. The
action, expanded to second order in h. , is given by
~Gauss +eir[0] + Zq iql I ' (q, iqi) ~A(q, iqi ) ~, where I
=1/g —

g~, ;„may be written as

n =no(p, T) —=g 1
—tanh

k

k
(3) n =no(p, T)+P nii(ro) (q, ro),

P+" dro t)S
q" — Z Bp

We now estimate, at the saddle point level, Tp as a
function of the coupling g by solving (2) and (3); the two
limiting cases can be solved analytically. In the weak
coupling limit (g 0) we use p&) To to solve (3) yield-
ing the result p =eF, where eF=kF/2m =(3' n) /2m is
the noninteracting Fermi energy. The solution of (2), for
1/kFa, —~, is To =8e yn 'eFexp( —n/2kF ~a, ~),
with y=1.781. This is just the BCS result with eF play-
ing the role of an eff'ective cutoff' [9].

In strong coupling the roles of the gap and number
equations are reversed: The gap equation (2) determines

p, while the number equation (3) determines To for

g ~. In this limit, 1/kFa, +~ and one expects
tightly bound pairs with binding energy Ei, =1/ma, , and
nondegenerate fermions with a large, negative chemical
potential: ~p~)& T. From the gap equation (2) we obtain

p = —Eb/2; i.e. , the chemical potential for the fermions is
one-half the pair binding energy. The strong coupling
(Ei/e, » I) solution of (3) yields To=Ei/2ln(Ei/eF)

This unbounded increase of the "transition tempera-
ture" with coupling is an artifact of the approximation,
and as we shall see, there is no sharp phase transition at
Tp. The trivial saddle point can only describe a normal
state consisting of free fermions. In strong coupling Tp is
thus related to a pair-breaking scale Td;„defined as the
temperature at which some fixed fraction of the bound
pairs are dissociated. To estimate Td;„we use the con-
dition pb =2pf for "chemical" equilibrium between
bound pairs (bosons b) and unbound fermions (f):
ii=f f +fj. Further the bosons and fermions are nonde-
generate and may be treated as classical ideal gases, lead-
ing to the result Td;ssuu=Ei, /ln(Ei/eF) . The logarith-
mic term is an entropic contribution which favors broken
pairs and leads to a dissociation temperature less than the
binding energy Eb.

To include the eA'ects of bound pairs in the strong cou-
pling normal state, and to determine the evolution of T,

where the "free"' no is defined in (3) and ng (ro)
=1/[exp(Pro) —11 is the Bose function.

Our next step is to see how the Gaussian fluctuations
aff'ect T, (g), the temperature at which long range order
is established. This is defined by the simultaneous solu-
tion of (2) and (4). In weak coupling the results are
essentially unaffected by the inclusion of Gaussian fluc-
tuations in the number equation, since the second term in

(4) is a small correction to the first one in this limit.
Thus we find p=eF and T, =Tp for g 0.

On the other hand, the strong coupling results are
greatly aAected by the proper treatment of bound pairs in

(4). To see this most clearly, note that the singularity
structure of I (q, z) reffects the two-particle spectrum.
For sufficiently large coupling (in 3D) I" has an isolated
pole representing the two-body bound state and a branch
cut representing the continuum of two-particle excita-
tions. For g ~ there is a very large cost to break a
pair, and the low energy physics for T ((Td;„~ is

dominated by the pole. Thus I (q,iq ) =R(q)/[iq
—roi, (q)+2p], with roi, (q)= —E~+ ~q~ /4m the disper-
sion for a pair. The partition function, after rescaling the

field, may be rewritten as Z =Zo fdpdpexp+q, ~,
x P~(iql —roi, (q)+2p)pv, which is nothing but the parti-
tion function of a free Bose gas. Going beyond the
Gaussian approximation, we find a repulsive two-body in-
teraction between the bosons (see below). As is well

known, this repulsion stabilizes the low temperature
phase, but does not substantially affect the condensation
temperature. From Z we obtain the strong coupling
number equation n=no+gqn~[roi, (q) —2p]. The sad-
dle point condition (2) is solved as before to obtain
p(T, ) = —Eb/2. The no in the equation above may then
be ignored, and we find the Bose condensation tempera-
ture T, = [n/2$(3/2)] i x/m =0.218eF, for bosons of
mass 2m [101 and density n/2

In Fig. I we plot a numerical solution of (2) and (4)
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which smoothly interpolates between the two limiting
cases described above.

To study the evolution of the TDGL we look at the
equation 6Sgff/bh*(q) =0 near T, for A slowly varying in

space and time. We expand the action (I ) to fourth or-
der in A(q), where q = (q,iq ), to obtain

~ i~(q)['~en-=W + & b 1,2, 3~1~2 ~3~1 —2+ 3+

We first look at the static part of the problem and make
the expansion I '(q, O) =a+ciqi /2m+ . It is
straightforward to show that

m +y 1

4m a, I 2' 2gq

X
4g 2

pY+ 2~Y+ pY 2X (k n)
8(g gk g2 8m(1,

where X=tanh(pgq/2), Y=sech (peak/2), and k n

=ikicos8. Further, the coefficient of the nonlinear term
is

b=—b(0, 0,0) =g
k 4$|, 8$|,

These results are similar to the recent work of Drechsler
and Zwerger [5] who, however, did not study the non-
trivial frequency dependence to be discussed next.

We next turn to the time dependence of the linearized
TDGL equation. This requires a careful examination
[6,11] of Gaussian fluctuations about the broken symme-
try solution, and a simple low frequency expansion is ob-
tained only when h(T) «co. In this case one needs to ex-

(5)

s/(k, a,)

FIG. 1. T /EF [and in the inset p(T, )/EF] as a function of the
coupling x =1/kFa, . The BCS limit corresponds to x
and the Bose regime to x)&1. The dashed line is the saddle
point result (see text).

tanl (Pg&/2)
d =g

2
+i xPJ—pe(p) .

4(k 8
(6)

Fourier transforming to (x, t) we obtain the TDGL equa-
tion

a+bid(x, t)i — V —id A(x, t) =0,
2m dt

(7)

where the coeScients are given above. We next discuss
in detail the two analytically tractable limits.

In weak coupling, we find a =N(eF) ln(T/T, ), b
=7/;(3)N(~, )/8~'T, ', c =7/;(3)N(~, )~,/I 2~'T,', and d
= [t'trN(eF)/8T, ] fl —i (2T,/REF)]. By rescaling the or-
der parameter O'= J2ch one obtains the conventional
TDGL equation with characteristic length scale g(T)
=(ps ' and time scale r (T) = r ps

' with go= vF/T,
( —(~„„ the pair size), and rp=l/T„where s=iT
—T, i/T, «1. The width of the Ginzburg region is (T,/

cF) . The dynamics of + is overdamped reflecting the
continuum of fermionic excitations into which a pair can
decay. There is in addition an O(T, /EF) propagating
part since the model is not particle-hole symmetric [12].

As the coupling increases, we see from (6) that the
coe%cient of the propagating piece grows while that of
the damped part diminishes. Beyond the singular point
at p(T, ) =0, an essentially propagating mode is obtained.
The fermionic excitations now have a gap in the normal
state, and the damping of the bosonic mode is ignored at
this level of approximation [13]. In the extreme strong

coupling limit d = ttN (eF )/8+eF l p i
with /t = —Eb/2, and

pand Q(iqt)—:I '(q=0, iqt) —I '(0,0) in powers of co

after analytic continuation. It is easy to see that Q(co
+i 0+ ) =Q'(co) —i Q "(co) with

Je tanh [(e p)/—2 T, ]
Q'(co) = KcoP dE

2(E —p)(co —2e+2p) '

Q "(co) =x2 3/ tr(2@+co) '/2tanh(co/4T, )e(2p+co),

where x'=N(eF)/ Jcq. A low frequency (co« T, ) expan-
sion of Q is possible both in the BCS and Bose limits,
where the condition co« i/ti is automatically satisfied.
Note, however, that for the intermediate coupling a, for
which /t(T, ) =0 the expansion breaks down since co=0
coincides with the branch point of I (q=0, z). This then
corresponds to a singular point in the evolution from
Cooper pairs to composite bosons where an energy scale
p(T, ) goes through zero. An analytical inspection of the
pole structure of I '(q, z) indicates that 1/a,* &0; i.e. ,

the coupling at which TDGL theory fails is always more
attractive than the threshold for a two-body bound state
in vacuum [8]. (See also Fig. 1, inset. ) However, the
condition A(T) «co together with co«min(T„ip(T, )i)
implies that our TDGL results are not valid in a small re-
gion about p(T, ) =0 where i/ti & A.

For A«co«min(T„ip(T, )i) the expansion Q(co
+i0+) = —dco+ yields

3204



VOLUME 71, NUMBER 19 PHYSICAL REVI EW LETTERS 8 NOVEMBER 1993

defining +o =Jd 5 we can rewrite (7) as —P+o
+Ui+oi @o—(2M) 'V +o —irJ, No=0. This is simply
the Gross-Pitaevski equation for a dilute gas of bosons of
mass M =2m with a repulsive interaction U=4rrab/M
characterized by a (boson) scattering length ab =2a, )0
with nbab « I, where nb =n/2 —kF (in terms of the kF of
the constituent fermions).

The chemical potential of the bosons controls the phase
transition via the change in sign of p=Eb —2ipi. The
prefactors of the divergent length and time scales at this

transition are given by go=kF '/ JkFa, »g~„,=a, and
zo= T, '/kFa„respectively. These are both much longer
than the microscopic scales because of the diluteness con-
dition kFa, &( 1. Consequently, the Ginzburg region
(e« kFa, ) is again small in strong coupling.

We have also extended the analysis to the broken sym-
metry state [6]. For T« T, Gaussian fluctuations make
only a small correction to the saddle point results even for
strong coupling, since the nontrivial saddle point already
includes the nonperturbative eAects of bound state forma-
tion and condensation (in marked contrast to the normal
state results). In addition to recovering the ground state
crossover [1], we have also studied the collective modes.
Unlike the regime close to T, with its singular point when

p(T, ) =0, a well-defined TDGL equation is obtained for
all couplings at T=O [14]. Using this we find that the
Anderson-Bogoliubov mode in the BCS limit evolves
smoothly into the Bogoliubov sound mode for the dilute
Bose gas. Note that the repulsion between bosons dis-
cussed above is crucial for the collective mode spectrum.

We have studied the crossover from Cooper pairs to
composite bosons in a 3D Fermi system with attractive
interactions. The functional integral approach was shown
to lead to useful approximations for all couplings and
temperatures, even in the absence of a small parameter.
Our results demonstrate the importance of quantum
(temporal) fluctuations in the intermediate and strong
coupling normal state [15]. An accurate treatment of
these Auctuations is therefore crucial for a full under-
standing of the deviations [4] from Fermi liquid behavior
with increasing coupling.
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