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Collective charge transport is studied in one- and two-dimensional arrays of small normal-metal
dots separated by tunnel barriers. At temperatures well below the charging energy of a dot, disorder
leads to a threshold for conduction which grows linearly with the size of the array. For short-ranged
interactions, one of the correlation length exponents near threshold is found from a novel argument
based on interface growth. The dynamical exponent for the current above threshold is also predicted
analytically, and the requirements for its experimental observation are described.
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Systems exemplifying collective transport in quenched
disorder include sliding charge-density waves (CDW's)
[1,2], fluids in disordered media [3], and type-II super-
conductors [4]. For these dynamical systems, there does
not yet exist a classification whereby the long-wavelength
behavior can be predicted from the characteristics of the
microscopic degrees of freedom. To study this question
of universality experimentally requires systems where the
microscopic degrees of freedom, the range of interac-
tions, and the nature of the disorder are well understood.
Here, we propose as a model system an array of small-
capacitance normal-metal dots.

In this Letter we examine the low-temperature, non-
linear charge transport in such an array. The dots are
treated as capacitively coupled conductors with charges
allowed to tunnel between neighboring dots. In con-
trast with previous work [5], we explicitly include the
effects of random offset charges on each dot and investi-
gate the limit where the number of dots becomes large.
We G.nd that the onset of conduction occurs at a volt-
age VT proportional to the linear array size. This sharp
onset is to be contrasted with conduction in one- and
two-dimensional disordered materials, where an increas-
ing electric fi.eld leads to a smooth increase in conductiv-
ity [6,7]. One of the correlation lengths that diverges near
this threshold is found from a general argument based on
interface growth, while another is found by focusing on
"slow points" which control the current. These correla-
tion lengths determine the branching of current paths in
the array and hence the current near onset. In particu-
lar, we predict that the current through linear and square
arrays behaves as

I (V/VT —1)~, (1)
with ( = 1, 5/3 in dimensions d = 1, 2, respectively.

The array we study is depicted in Fig. 1. For a tun-
neling resistance A between dots large compared to the
quantum resistance h/e2, the state of the array is fully
described by the number of electrons in each dot. The
energy is then all electrostatic and is determined by a
matrix of capacitances C,j. We assume a constant ca-
pacitance C between neighboring dots and between the
leads and adjacent dots, and a capacitance Cz between
each dot and the back gate which underlies the entire
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FIG. 1. The threshold voltage per dot, Vz /IV, in units of
e/C forsconduction through a one-dimensional array of nor-
mal-metal dots as a function of C/Cs. The dashed lines show
analytical predictions. A two-dimensional array of dots is
shown in the inset. The indicated capacitance between dots
is C, while the capacitance between each dot and the back
gate (the dashed rectangle) is Cs. At T = 0, charges may
only tunnel between neighboring dots if this lowers the total
electrostatic energy. The voltages applied to the left lead,
the right lead, and the gate are indicated as VL, , V~, and VG,
respectively.

array. The diagonal elements of C,j are the sum of all
capacitances associated with a dot and the off-diagonal
elements are the negative of the interdot capacitances.
The leads and back gate are taken to have infinite self-
capacitance. We concentrate on the Coulomb-blockade
regime, where the thermal energy is much smaller than
the charging energies, i.e. , k&T « e / [2 max(C, C~)] (for
1 pm dots, this energy is 1 meV [8]). We measure dis-
tances in units of the dot spacing.

Given the charge Q, on each dot, the electrostatic en-
ergy is [5]

) . (Q'+ v') C, , '(Q& + v&)
dots i,j
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where Ql. R are the charges on the leads, which are at
voltages Ul. R. Disorder is included through the offset
charges q, which represent the effective charge on each
dot due to nearby charged impurities. Large fluctu-
ations in disorder will be compensated by an integral
number of mobile charges, so that 0 & q, ( e. The
voltage V,' on dot i due to the leads I, B and the
gate g is V,' = g C g*. C, V, where Cl, (R) = C
and P . is the sum over dots j which neighbor the elec-
trode x = I, R, g. In general, the elements of the inverse
capacitance matrix fall off exponentially with a screen-
ing length A that increases with C/Cz [for C )) Cz,
a = (C/C, )'/'].

At low temperatures, a charge may tunnel between
dots only if such an event lowers the electrostatic energy
of the array. The kinetic energy gained by the tunneling
electron is assumed to be dissipated [9]. The tunneling
rate from one configuration S = (.. . , Q, , ..., Qz, ) to an-
other configuration S' = (.. . , Q, —1, . . ., Q~ + 1, . ..), where
i and j are neighboring dots or a dot and a neighboring
lead, is given by

»-s = (e'&) ' fl(&(~) —&(~')) [&(~) —&(~')] (3)

The function o.(C/C~) for one-dimensional arrays is
plotted in Fig l. In the limit C/Cg —+ 0, the voltage
on a dot is just (Q, + q, )/Cg, as the capacitive coupling
between dots is negligible. The schematic in Fig. 2(a)
shows that in order to carry a current in this limit, the
voltage difference across the array must be large enough
to overcome —N/2 upward steps in the random poten-
tial. This observation gives o.(C/Cg ~ 0) = 1/2. In the
limit of large C/Cg (large A), VT can be estimated by bal-
ancing the "force" on the charges due to a charge-density
gradient against the random potential gradient [11].It is
necessary to recognize that there is a stability limit for
the dot-to-dot potential difference: At higher potential
difFerences, charges will tunnel, reducing the potential
across the tunneling barrier. Estimating the magnitude
of the pinning forces to be given by this stability limit, we
find [12] a maximum static density gradient of e/A2;
that is, a density change of O(l) charge per screening
length is allowed in regions separated by A. This gives
n (C/C~) i at large A. Numerically, we find in d = 1
that (C/C~)a ~ 0.10(1), as C/C~ ~ oo.

We now discuss the approach to the conduction thresh-
old in two dimensions, in order to elucidate the critical

This rate grows linearly with energy gain since the num-
ber of electrons available to tunnel is proportional to the
relative shift of the Fermi surfaces in the dots. For ar-
rays of a few junctions, numerical results on this model

[5] compare well with experiment [8].
For large arrays, we find a second-order transition,

with associated critical phenomena, which separates a
static, nonconducting state from a dynamic, conducting
state. The control parameter is the voltage difFerence
between the leads. At low voltage differences, the ar-
ray always relaxes to a static configuration, while at high
voltage differences, charges traverse the array from one
lead to the other.

An important question to ask is whether the conduc-
tion transition is hysteretic for a given realization of
disorder. In one-dimensional systems, the current is a
unique function of the applied voltages, regardless of the
magnitude of A [10]. In two-dimensional arrays at zero
temperature, the current can depend on the history of
the applied voltages. To within our numerical accuracy,
however, the current is history independent in typical
samples. It can furthermore be shown that the current
is entirely independent of history in the limit of short
screening lengths, C/Cz —+ 0, to which we shall devote
most of our attention.

We have numerically determined the dependence of the
threshold voltage for conduction, VT(N) = Vl, —VR, on
the ratio C/Cg and on the linear system size N (for fixed
gate voltage Vg

——0). We find that the threshold voltage
is proportional to N,

lim VT (N)Cg/Ne = o.(C/Cg), (4)

where the overbar represents an average over disorder.
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FIG. 2. (a) Schematic of dot voltages for a one-dimensional

array below the threshold for conduction, in the limit of short
screening length A. Each square indicates an increase in the
on-site voltage by e/Cg due to an added charge; the relative
offset in the voltages is caused by quenched disorder. If the
left-lead voltage Vz, is further raised by e/C~, charges will tun-

nel onto the array until stopped by the next upward step, as
indicated by the dashed squares. The inset shows the calcu-
lated sample-to-sample fluctuation of threshold voltages, VT,
in one and two dimensions as a function of linear system size,
N, with fits described in the text [Eq. (6)]. (b) Contours
of constant charge occupation in a 160 array at the thresh-
old VT (contour spacing is 5 charges). Successive contours
coincide with the distance to which charge flows for various
voltages below threshold, VL, ( VT. Conduction occurs at the
voltage where the charge first reaches the right lead.
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behavior of the correlation lengths and current. We con-
centrate on the limit C/Cz ~ 0, that is, A small, in order
to maximize the number of efI'ective degrees of freedom
and to eliminate hysteresis. Taking V~ to be fixed and
raising Vl. , charge moves from the left lead onto the ar-
ray. The condition for a charge to overcome the Coulomb
barrier and tunnel from site i to neighboring site j is

V, & V, + e/C, . (5)
At a given Vl. , this advance of charge is halted when
V, & V~ + e/Cz everywhere. Though the tunneling is
stochastic, the static configuration at any Vl. & VT is
entirely determined by the disorder realization. The
distance to which charge penetrates therefore defines a
unique interface (given Q, = 0 initially). When Vl, is
raised by e/Cz, charge is added to each point on the in-
terface and therefore the interface must advance by at
least one lattice spacing. In addition, the interface may
advance further at some points if the local disorder is fa-
vorable. The motion of this interface is depicted in Fig.
2(b); conduction occurs when the interface reaches the
right lead. Numerical calculations of this threshold give
o;(C/Cg —+ 0) = 0.338(1) in d = 2.

The dynamics of the Coulomb-blockade condition Eq.
(5) make the interface "motion" with increasing Vl, sim-
ilar to the stochastic growth of interfaces in models
without quenched spatial disorder, such as the one due
to Eden [13]. The results on the Kardar-Parisi-Zhang
(KPZ) equation for a (d —1)-dimensional interface [14]
subject to short-range correlated noise are therefore use-
ful in understanding the behavior of a d-dimensional ar-
ray of dots. The KPZ equation will describe the long-
wavelength behavior even when C/Cg g 0, as the inter-
actions are short range, rotation is a symmetry on large
scales, and the speed of interface advance lacks large fluc-
tuations. This is to be contrasted with the usual motion
of interfaces at small velocities through random media,
where the interface can be pinned for some time at one
point, resulting in long time correlations and exponents
distinct from those of the KPZ equation [15].

In the case d = 2, the results for KPZ interfaces
imply that the width of the interface must scale as

V~ [14]. Furthermore, the fluctuations in the posi-1/3

tion of maximum advance of the interface behave as
VL (lnVI, ) ~ . The rms fluctuations AVT in VT and

the mean threshold voltages V~ therefore behave as

&VT/VT N ~ (ln N)', (6)
VT(N)C&/eN —n N (ln N), (7)

for an N x N array [16] (for d = 1, AVT/VT N ~ ).
The fluctuations in the threshold voltage as a function of
size may be used to define a finite-size scaling exponent
vT via N (AVT/VT) "r. This length, besides giving
the fluctuations in VT, determines the finite-size crossover
in quantities such as the polarization of the array [2].
From Eq. (6), we find vT = 3/2. Numerical simulations
on systems up to size N = 2560 are fit very well by Eq.
(6), as shown in the inset in Fig. 2(a), and by Eq. (7).
3200

The current in the one-dimensional model with only
on-site interactions can be understood in detail. For volt-
ages much greater than threshold, v—:(Vl, —VT )/VT )) 1,
the charge gradient across each junction is much greater
than 1. By Eq. (3), the current is then approximately

I = (e/2BCg)v. (8)
In contrast, near threshold, the discreteness of the
charges and the disorder become important. The ex-
cess charge gradient above the threshold configuration
is composed of steps that occur at well separated "slow

points, " located where the potential drop between dots in
the threshold configuration is small compared to e/C~. It
can be shown [12] that the current is given by the fastest
slow point; the tunneling rate across this point is, on av-

erage, (V —VT)/eRN. Interestingly, near threshold this
also gives Eq. (8). We therefore find },

' = 1 for Eq. (1) in
d = l. As shown in Fig. 3(a), Eq. (8) is consistent with
our numerical results near and far from threshold.

The pattern of current flow in a typical two-
dimensional array is shown in Fig. 3(b). At voltages just
above threshold, Vl, —Vz (( e/Cg, the current is in gen-
eral carried on a single path, with little or no branching.
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FIG. 3. (a) Plot of current-voltage relationship near thresh-
old for one- and two-dimensional arrays of various sizes. The
numbers in parentheses give the number of disorder realiza-
tions. For one-dimensional arrays, the current both near and
far from threshold is well fit by Eq. (8). The data for the d = 2

arrays are approximately fit by I (U —UT)
' at the low-

est currents shown, though the local slope on the log-log plot
has not converged. (b) Current paths in a two-dimensional
array (of size 160 ) at two voltages near threshold. Very near
threshold, the current flows in a single narrow channel (dark
line). Multiple branching channels are shown for a voltage
3e/C~ above threshold (light lines).
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This path is exactly the one with the minimal number
of upward steps in the potential between the two leads.
Previous work [14 shows that such paths have transverse
fluctuations ~ n, where n is the distance from the left
lead; this is consistent with our numerical results. In-
creasing the voltage to a few times e/Cg above threshold
opens multiple channels which branch and reconnect, as
shown in Fig. 3(b). Note that at voltages VL, exceeding
threshold by O(eN~~s(ln N) ~~2/Cz), current can in prin-
ciple flow anywhere in. the array, as the charge invasion
interface contacts the right lead at each point. However,
near threshold, all but a small fraction of the current is
confined to a few major current-carrying paths. The se-
lection of these paths out of all possible paths results from
a characteristic length for branching, as we now discuss.

Any current-carrying channel between the two leads
must have (VI, —VT )Cz excess steps in the charge den-
sity relative to the threshold configuration. This gives a
correlation length ([~

= eN/(VI, —VT)C~ which separates
the steps in the excess charge, as in d = 1. This length
determines the separation between branch points along
the channels [12]. The channels therefore wander trans-

versely a distance
([~

between branch points, giving a
channel separation of Q v 2~s. The current through
each channel behaves as (e/2RC~)v, since each seg-
ment between branch points is one dimensional. The
current through the array is then given by

I (e/2RCg)vN/(~ (e/2RCg) Nv ~, (9)

resulting in ((d = 2) = 5/3.
Our numerical results for the transport in two-

dimensional systems are shown in Fig. 3(b). The current-
voltage relationship is approximately fit by I/N
v + *, for v near 10, but the slope on a log-log plot
does not converge in the range we have studied numeri-
cally. To observe the true exponent requires arrays larger
than 400, either numerical or experimental.

In conclusion, we have determined the threshold for
conduction in arrays of small normal-metal dots with dis-
order. By examining correlation lengths that describe the
separation of parallel current paths and the distance be-
tween dynamically important "slow points" we have de-
termined the transport behavior near the threshold. The
critical exponents for the current and correlation lengths
which we have derived using the KPZ interface model are
distinct from those found for elastic media [1] and fluid
flow [3,17]. These differences are clearly related to the
novel features of this system, namely, the discreteness of
the carriers and (quantum) stochastic flow, which result
in (a) an always advancing charge interface below thresh-
old and (b) the nonlocal selection of current paths above
threshold.
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