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Addition Spectra of Quantum Dots in Strong Magnetic Fields
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We consider the magnetic field dependence of the chemical potential for parabolically confined
quantum dots in a strong magnetic field. Approximate expressions based on the notion that the
size of a dot is determined by a competition between confinement and interaction energies are
shown to be consistent with exact diagonalization studies for small quantum dots. Fine structure
is present in the magnetic field dependence which cannot be explained without a full many-body
description and is associated with ground-state level crossings as a function of confinement strength
or Zeeman interaction strength. Some of this fine structure is associated with precursors of the bulk
incompressible states responsible for the fractional quantum Hall e8'ect.

PACS numbers: 73.20.Dx, 73.20.Mf

Advances in nanofabrication technology have made
it possible to manufacture "quantum dots" in which
electrons are confined to a small area within a two-
dimensional (2D) electron gas [1]. Interest in these sys-
tems has grown as a result of recently developed tech-
niques [2,3] which probe them spectroscopically. The
quantity which is measured [4] in these experiments is the
magnetic field dependence of the "addition spectrum, "
i.e. , the energy to add one electron to a dot. This is
given by p~ =—E~ —E~ » where E'~ is the ground
state energy of an N-electron dot. Addition spectrum
measurements have generally been interpreted in terms of
"constant interaction" models in which electron-electron
interactions are accounted for by including a charging en-

ergy which is characterized by a fixed self-capacitance; or,
when this fails, by using Hartree or Hartree-Pock approx-
imations. However, especially at strong magnetic fields,
quantum dots can have strongly correlated [5,6] ground
states, some of which are precursors of the bulk incom-
pressible states responsible for the fractional quantum
Hall effect. In this regime a complete interpretation of
addition spectra measurements requires an exact treat-
ment of the Coulombic electron-electron interactions.

In this Letter we report on numerical exact diagonal-
ization calculations of the addition spectrum for quan-
tum dots in a strong magnetic field. We fi.nd that the
addition spectrum has a surprisingly rich magnetic field
dependence, showing a large number of sharp features su-
perimposed on a smooth background. The background
can be accounted for using a simple Hartree approxima-
tion. The sharp features are associated with energy-level
crossings at fixed N, often between strongly correlated
states. The spin degree of freedom has a nontrivial role,
in general not consistent with expectations based on the
Hartree-Fock approximation. The constant interaction
model fails qualitatively for strong magnetic fields.

We consider a system of 2D electrons confined by a
parabolic potential [7], V(r) = m02r2/2. We confine
our attention here to the strong magnetic field limit [8],

0/a, & 1. (a, = eBg/m*c, where B~ is the component
of the magnetic field perpendicular to the 2D layer. ) In
this limit [1] the symmetric gauge single-particle eigen-
states are conveniently classified by a Landau level in-
dex n and an angular momentum index rn & —n, and
we can confine our attention to n = 0. The single-
particle orbitals in the n = 0 level have energies e
~,/2+ p(m + 1), where p = m*A2E2 and E2 = hc/eB~
[(m r [m) = 2l (m+ 1).] Hereafter we absorb the con-
stant Ku, /2 into the zero of energy, and use as the unit of
energy the interaction energy e /el. The many-electron
energies are then determined by two dimensionless num-

bers characterizing the ratio of the confinement and Zee-
man energies to the interaction energy; p:—p/(e /eE)
and g =— gpB/(e /eE). Note that we explicitly include
the possibility of tilted fields since we believe that tilted-
field experiments will prove to be very valuable.

The Hamiltonian is invariant under spatial rotations
about an axis perpendicular to the 2D plane and passing
through the center of the dot, and also under rotations
in spin space about the magnetic field direction (n). It
follows that both the total angular momentum M, and
S —= S o. are good quantum numbers. Eigenenergies
may be expressed as a sum of interaction and single-
particle contributions,

E, (N, M„S ) = U, (N, M„S~)
+p(N+M, ) —gp~BS .

Here i labels a state within a (M„S ) subspace, and
U, (N, M„S ) ac e2/e/ is determined by exactly diag-
onalizing the electron-electron interaction term in the
Hamiltonian within this subspace [9]. We have used a
Lanczos algorithm to determine the minimum interac-
tion energy within each subspace, Ue(N, M„S ). For
N = 2, 3, 4, 5, 6 we have considered all possible values of
S, while for N = 7, 8 we have considered only fully spin
polarized states with S = N/2. In each case we have
considered all values of M, from the minimum value con-

3194 0031-9007/93/71 (19)/3194(4)$06.00
1993 The American Physical Society



VOLUME 71, NUMBER 19 PHYSICAL REVIEW LETTERS 8 NOVEMBER 1993

sistent with the Pauli exclusion principle (see below) to
M, = 3N(N —1)/2, which is large enough to accommo-
date an m = 3 Laughlin droplet [10,11]. For given values
of p and g the ground state subspace is determined by
minimizing Eo(N, M„S ) with respect to M, and S
This procedure results in a surprisingly rich phase dia-
gram.

Results for N = 5 and N = 6 are shown in Figs. 1
and 2. Regions in the phase diagram are labeled by the
quantum numbers of the state with lowest energy. Along
the boundary lines in these phase diagrams ground state
level crossings occur; the slope of a line is given by (S
S~)/(M, —M,') and the intercept by [Uo(N, M,', S' )—
Uo(N M3 S~)]/(M~ —M,'). In each spin multiplet the
only ground state candidate for any nonzero g is the state
which is polarized along the field, i.e. , S~ = S. Thus the
S values in these figures give the total spin quantum
numbers of the corresponding states.

We discuss these rather complicated phase dia-
grams, beginning with g and p relatively large,
on the upper right-hand side of the lower panels.
For N = 5 only the (4,1), (6,3), and (10,5) re-
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gions in the phase diagram correspond to the single-
Slater-determinant ground states which would be ob-
tained in the Hartree-Fock approximation. The
occupation numbers for these states are given by
(~ ~ oo; ~ ~ o), (~ ~ ~ ~ o; oo), and (~ ~ ~ ~ oo; o), respec-
tively. [An occupied (unoccupied) single-particle state is
represented by a full (empty) circle. Circles left (right)
of the semicolon represent spin up (down) states. The
angular momentum m of a single-particle state increases
from left to right. ] Similarly, for N = 6 the (6,0), (7,2),
(10,4), and (15,6) regions have single-Slater-determinant
ground states with occupation numbers given by (~ ~

~0; oooo), (ooooo; ooo), (oooooo; oo), and (ooooooo; o),
respectively. The (4,1) state for N = 5 and the (6,0)
state for N = 6 minimize the confinement energy and
are ground states at all values of p in the absence of
other interactions. These states are the precursors of the
Landau level filling factor v = 2 states for bulk systems.

As the confinement strength p weakens, interactions fa-
vor less compact (larger M, ) electron dots. [Uo(N, M, +
1, S~) & Uo(N, M, S ).] For these dot sizes the expan-
sion first occurs, except at small g, by forming the most
compact states consistent with increasing spin polariza-
tion until complete polarization is reached. For large
g, states with large spin quantum numbers are favored;
eventually, for very large g, only states with S = N/2
occur. The tendency toward complete spin polarization
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FIG. 1. Phase diagram for a N = 5 parabolically con-
fined quantum dot. Regions in the phase diagram are la-
beled by the M, and Ny —Ng values of the ground state.
[8 = (NT —Ng)/2. ] The upper panel shows the rich behavior
at weak confinement which is related to the physics of the frac-
tional quantum Hall effect. The dashed line shows the path
in the phase diagram followed by GaAs sample with hA = 2
meV and a perpendicular magnetic field between B = 2.5 T
and B= 7T.
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FIG. 2. Phase diagram for a N = 6 parabolically confined
quantum dot. Regions in the phase diagram are labeled as in
Fig. 1.
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p~ ((e /eE) p(4~2/3~) )'~—N ~ .2' ' (6)

is what simp i es e p1 fi. th hase diagram at larger values of
ll as the confinement p weakens the dot ex-

pands by introducing holes [11,12) into the dot. s
h 1 be in to correlate the Hartree-Fock approximationo es egin o

f '1 One consequence is that interactiobegins to ai. ne
favor states which are not completely spin po arize .
weaker confi. nemen efi. . t th ground states are linear combi-
nations of many a er eSl t d terminants. Many of the states
which occur can e i en i eb 'd t'fied as precursors of the bulk
incompressi e s a es'bl t t responsible for the fractional quan-
tum Hall effect. For example, for N = 5 the (30,5) region

d th = —state while for N = 6 the (36,0)correspon s to e v =
3

and (45,6) phase regions correspond to the v =
5 spm-

singe s a e =
3

— s a es.1 t t t and v = —spin-po arize states.
States wi arith larger values of M, occur and e p

he u er anelsdiagram ecod' b omes richer as p decreases. The upper pane s
in Fi s. 1 and 2 show the small g, small p regions o ein igs. an
phase diagrams on an expanded scale. e1 . The dashed line
shows the path taken through these phase diagrams for

1 'th hQ = 2 meV as a function of B~.
(For GaAs p 0.131(hA[meV])2/(B~ [T]) an g
0.0059B T]/(B~[T]) ~ ) Regions of the phase diagram
to the right of this line could be explored experimentally

Some qualitative features of these results can be un-
derstood rather simply by considering the competition
between eth Hartree and confinement energies. As-

h t ' th ground state electrons occupy e
~ ~

smallest-m orbitals with approximately equal probabi-
d' t harge distribution which is approxi-

mately that of a uniform disk of radius [13] R =
M NN /2. The maximum value

of N/N~ allowed by the Pauli exclusion principle is 1 or
spin-polarize s a es a1

'
d t t and 2 for unpolarized states. For

~ ~

all but the smallest dots the two largest contributions
to the total energy wi e'll b the Hartree and confinement
energies,

8eN e 4v2 N (2)37cc+ ~E 3~ Nl /2 '

E~ = p(M, + N) pNNy/2. (3)
Corrections due to exchange and correlations give a con-
tribution proportional to N fo gr lar e N and are rela-
tively less impor an ort t f r large dots. The confinement en-

esofN w ileergy favors compact dots with small values of Ny w i e
e dots. or a given

value of p anf and N the optimum dot size is determined by
minimizing E + E with respect to Ny This gives.

2/3
4&2

(4)N i3vrpN~ )
E~+Ec = —((e /eE) p(4v2/37r) ]

~ N ~, (5)2
and

Note that in this approximation the energy and p,~ are

itative y rom e co1 f th nstant interaction model w ere p, ~
would be the sum of an interaction term proportiona
to N and a single-particle term. The difFerence is that
here the size o e of th d t is not fixed but is determined y
a competition of interaction an g -psin le- article terms.

'
Li F' . 1 and 2 we see that the values ofComparing wit igs. an

the groun s a e ad t t ngular mornenta are reasona ly esti-
evenmated by Eq. (4) [M, NNy/2 0.36(N/p) ] even

o = d N = 6. (Overestimates are expected
since corre a ions wi1 t' 'll reduce the interaction energy cost
of ma ing e oskin the dots smaller. ) In the Hartree-Foc gen-
era ization o1' '

n of the above argument, the exchange energy
ld t bilize the state with the largest spin po ariza-wou s a size

1 ed b the Pauli exclusion principle for a g'

M, . Indeed the most compact fully spin-po arize s a e
—1~i 2 S = N/2), which is the precursor of

the bulk v = 1 state, has a large range of stability in the

with smaller values of S occur at larger M, w ere u
ll wed. This is in direct contradic-

tion with Hartree-Fock theory and is a result of corre a-

tions.
ows ,

'~ ceofhows ,'14~ the magnetic field dependence o p, 6

for a GaAs sample with hQ = 2 meV. e mse s

results for N = 2 3 4 5 6 on a wider energy scale. ) The
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I IG. 3. Magnetic field dependence ofof the N = 6 addi-
tion spectrum for a para o ica yb licall confined quantum dot with

there is a round
tate level crossing for either t esae

t between two upward tick mar aare labeled witsegmen s e w
2S of the N = 6the round state quantum numbers „o

dot. Se ments between downward tic m
t e groun s

marks are labeled witho . egme
N = 5 dot. The paths followed

through the phase diagrams for this model are indicate y
I i s. 1 and 2. The inset shows results forthe dashed lines in igs. an

= 2 3 4, 5, 6 on a wider energy scale. e d de das ed ines are
the best fit of the constant interaction modeodel to our results.
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sublinear increase in p,~ with N is consistent with the
N ~s dependence predicted by Eq. (6). Similarly, the
magnetic-field dependence is weaker than expected from
the constant interaction model (dashed lines) and consis-
tent with the approximate field independence predicted
by Eq. (6). In approximate agreement with Eq. (4), the
angular momentum di8'erence between the N = 5 ground
state and the N = 6 ground state increases from 5 to 15
in going from the left- to right-hand sides of the curve.
However, the finer features apparent in the plot of p6
are a consequence of strong correlations and cannot be
explained with Hartree-Fock or similar approximations.
There are many cusps in p, 6 due to ground state level
crossings of either N = 5 or N = 6 dots. At a ground
state level crossing dEo/dB must decrease. It follows
that ground state level crossings in the N —1 and N
particle systems lead respectively to positive and nega-
tive cusps, as seen in Fig. 3. Note that unlike the pre-
diction of an independent-particle approximation [2,3],
upward and downward pointing cusps do not in gen-
eral alternate. At the left-hand side (B 2.5 T) of
this figure both the N = 5 and N = 6 dots are in the
[M, = N(N —1)/2; S = N/2] maximum-density spin-
polarized states, while at the right-hand side (B 6 T)
both dots are in [M, = 3N(N —1)/2; S = N/2] states.
These states are the precursors of the bulk v = 1 and
v = 1/3 incompressible states and the incompressibility
is reflected [9] in the relative large regions of stability
in the phase diagrams. The resulting "plateaus" in the
addition spectrum should be among the most visible fea-
tures experimentally. Precursors of a filling-factor-v state
will occur for N/Ny = v; it follows from Eq. (4) that for
GaAs we can expect associated features in the addition
spectrum to occur for B[T] 0.363(hA[meV])4~sN~~s/v.
Features identified with v = 2 in the recent experiments
of Ashoori et al. [3] seem to follow this N ~s law rather
well. Unidentified experimental features which appear
at approximately twice this field may be precursors of
the v = 1 incompressible state. We predict that features
associated with precursors of fractional incompressible
states will appear at stronger Gelds and also, less visibly,
at intermediate fields.
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