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An exciton crystal (EC) is predicted in a quasi-one-dimensional (1D) semiconductor quantum
wire for the densities (1 < r; < 5.5) due to the repulsive interaction between singlet excitons (z’s).
Low-lying excitations, stability, and melting of the EC are determined within the Heitler-London
approximation. The expected short condensation times (ps) will allow an EC formation in, e.g.,
GaAs quantum-well wires with relatively short z lifetimes. For T' < 10 K the EC is a pure quantum
crystal which favors collective, coherent emission in the form of superradiance.

PACS numbers: 71.35.4+z, 73.20.Mf

Collective electronic phases are of fundamental in-
terest in solid-state physics. Recently, the concept of a
Wigner electron crystal (WEC) [1-4] has been verified
in a number of experiments in 2D electron systems [5,6].
However, a “true” 2D-WEC at zero magnetic field re-
quires a very dilute electron system and thus is difficult to
realize. The WEC can be the ground state of the system
of free electrons moving in an ion lattice which is usu-
ally approximated by a jellium model. Then the ground
energy is determined by the dimensionless interparticle
spacing r,, which is the ratio of the particle distance and
the electron Bohr radius calculated with an effective elec-
tron mass and a background dielectric constant. Only in
the low-density limit (r; > 10) a simple unscreened inter-
action between nearest-neighbor electrons can be consid-
ered. If this assumption holds, WEC condensation can
occur.

In a neutral electron-hole (e-h) system the ground state
is rather different. Here the e-h pairing to = states min-
imizes the ground-state energy and introduces the ez-
citon Bohr radius a, as a natural length scale. Higher
order e-h correlations are connected with z-z interac-
tions. Because the x is a neutral complex, the z screening
is suppressed and becomes only important in the high-
density limit (rs < 2) [7,8]. In this limit, the z overlap
is large, whereas in the low-density limit the x system
is an ideal Bose gas becoming weakly nonideal at inter-
mediate densities (2 < rg < 10) [9]. Thus, the ground
state at these densities is a Bose-Einstein condensate of
the z’s. This state has been considered as an excitonic
insulator phase in connection with the metal-insulator
transition in semimetals [10], as well as in ordinary semi-
conductors [9]. The z representation for the description
of the ground state of the degenerate e-h system is valid
below the Mott transition to an e-h plasma which occurs
at relatively high densities (r, ~ 1.7 for the 3D case [7],
e.g.).

In this Letter we propose a crystal-like excitonic phase
as the ground state of a 1D z system at intermediate =
densities. For this density range, the generalized Hartree-
Fock method [9,10] is often used. This treatment implies
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a homogeneous z distribution in real space. Instead of
this, we consider a spatially ordered structure of z’s. The
one dimensionality of the x system plays an important
role in our treatment.

We consider a quasi-1D system of Wannier z’s and as-
sume that all z’s have the same singlet spin structure
with, e.g., e T and h |. This situation can be realized,
e.g., in GaAs/Gaj_,Al,As quantum-well wires (QWW)
by exciting the z’s with a circularly polarized light pulse.
Because of the Pauli principle, the interaction potential
between these singlet z’s is repulsive. This repulsion
drives the x system into a state with equal separation. A
simple analog is a set of identical point masses coupled
by identical springs. The whole chain is under an exter-
nal pressure. This situation has been realized in a dilute
system of the laser-cooled Mg* ions stored in a closed
1D ring trap [11]. For a 1D z system the question arises
whether the large zero-point motion connected with the
light £ mass will destroy such an = condensate with 1D
diagonal order.

A 1D hydrogen atom with a singular 1D Coulomb po-
tential, as well as its regularization, has been treated in
Ref. [12]. This model has been adopted for 1D e-h sys-
tems in QWW [13] with free motion in the z direction
and an infinite circular confinement potential with a ra-
dius R in the z-y plane. The effective Coulomb inter-
action between the carriers is obtained by averaging the
3D Coulomb potential with the transverse envelope wave
function in the confinement potential of the wire. The
resulting quasi-1D e-h Coulomb potential U (2) can be
approximated by the following regularized 1D Coulomb
potential [13]:

U(2) = a0/ (|2| + aR) , ¢
with o =~ 0.3 for GaAs/Ga;_;Al;As QWW. Here, ao
is the bulk z Bohr radius, while the energy is scaled

to the bulk z Rydberg Ey. The corresponding = wave
function is given in terms of the Whittaker function

Wie1/2(2): Wa(2) & Wiep-172,172(121 /a1p, e +(1/2)e 1),
where a1p . = (a0/2)|e|~1/? and |e|Ey are the 1D z ra-
dius and binding energy of the ground state, respectively.
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There is a universal relation between R and € , which for
R — 0 has the explicit asymptotic form [12,13]

M = 6_\/m/2- (2)
ag

Equation (2) allows us to use € rather than R as the
characteristic wire parameter.

The low-lying collective excitations of the exciton crys-
tal (EC) are LA-phonon-like with the dispersion

w = w(k) :2,/%‘2& sin (%‘i) .

Here, W and W’ are the potential energy of the z-z in-
teraction and its second spatial derivative, respectively,
M is the total x mass, and a = a,-; is the lattice param-
eter of the EC, i.e., the distance between the centers of
neighboring z’s. According to the Mott criterion [2-4],
a lattice exists at T = 0 K, if the potential energy of
the lattice exceeds the corresponding zero-point energy
€0. The zero-point motion includes the kinetic energy as
well as some potential energy. For the EC this criterion
takes the form

)= 22 e ey < W), @

where u and M are the reduced and translational x mass,
respectively. The dimensionless interparticle distance
rs = a/aip,s is the normalized lattice parameter. The
Mott criterion guarantees the stability of the EC phase
against the z gas phase. Because the x wave function
decays exponentially with the distance from the z lattice
site, the inequality (4) defines the upper phase bound-
ary 7sc of the EC. Apart from the energy |e|, the Mott
criterion (4) contains the mass ratio p/M. This ratio is
the smallness parameter which ensures the high stability
of usual atomic lattices. For further analysis, the heavy
hole z of GaAs/Ga;_,Al;As QWW is considered, where
p/M = 0.11.

In order to find W (r,), the Heitler-London method
(see, e.g., [14]) is used. This method is conventionally
applied for the chemical forces in the approximation of
nearest-neighbor interactions, which is valid for the pro-
posed EC in a wide range of intermediate x densities.
The Heitler-London z-z interaction potential as a func-
tion of ry is

3)

—A
W) =2/l | (5)
where S = S (r5) is the overlap integral
S =/dz1 Uy (21) ¥ (a—21) . (6)

The Coulomb integral Q = Q (r5) is
Q=U(a) — 2/dz1 V2 (21)U(a — 21)

+ / dzy dz U2 (20) U2 (2) Ula — 21+ 22) ,  (7)

while the exchange integral A = A (r,) is
A= S%U(a) — 2.5’/ dz1 ¥4 (21)¥x(a — 21)U(a — 21)

+ / dz1dza U, (21)¥,(a — z1)U(a — 21 + 22)
x W, (22)¥o(a+ 22) . (8)

Note that the distance between the heavy particles (here
the holes) rather than the distance between the centers
of mass has to be used as the adiabatically varying pa-
rameter. This approach is valid for ry > m./M = 0.12,
where m, is the electron mass.

All the integrals in Egs. (6), (7), and (8) can be evalu-
ated analytically for |e| > 1. In this strong-confinement
limit the normalized z wave function is [12]

_—i—e—lzl/2alD,z . (9)

2C’«lD,x

U, (2) =

With Eq. (9) the z-z interaction potential W (rs) be-
comes

€] e "B+ C

w (7‘3) = ’ (10)
2 1-em(14+17)?
with
B = _4 -4+ (4\/|e|—27—1)
Ts )
+4rge™ Ey (rg) + 2rsIn7, (11)
and
C= 4_ (1 + i) rs€™ By (1s)
Ts s
3 -
(1= e (12)

Here, v = 0.577 is the Euler constant and F; (rs) and
E; (rs) are the exponential integral functions. Equations
(4) and (2) yield the limiting value of the upper boundary
Tsc (—€ — 00, R — 0) = 3.4.

We also evaluated the integrals (6), (7), and (8) nu-
merically with the exact z wave functions. In Fig. 1 the
interaction potential and the zero-point energy of the EC
are compared for the confinement parameter |e| = 4.0,
corresponding to Eip, = 16.8 meV and R =~ 0.lag.
Such binding energies can be realized experimentally
[15]. The resulting upper critical lattice parameter is
Ts,uc =~ 4.5. This critical parameter reaches at small but
finite wire radii R ~ 0.2a¢ (corresponding to |e| = 2.38
or Eip; = 10.0 meV) a maximum of r, . = 5.4, because
the x wave function decreases more slowly for smaller |e]
values. For z binding energies F1p , < 10.0 meV an in-
stability of the EC lattice occurs. This instability arises
when W becomes negative, so that vW” in (3) and (4)
becomes imaginary. Imaginary values of w(k) are a mani-
festation of a dimerization transition to a lattice with two
z’s per elementary cell. Note that our calculations also
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FIG. 1. z-z interaction potential (full line), kinetic energy
at various temperatures (dashed lines), and zero-point energy
(T = 0 K) versus lattice parameter r; for the confinement
parameter |¢| = 4.0 (E1p,. = 16.8 meV, R = 0.1lap). Inset:
crystallization temperature T, versus 7.

yield a lower critical lattice parameter 7, ). ~ 0.2; how-
ever, at these high x densities our approach is no longer
valid. In any case the lattice parameter corresponding to
the Mott transition 7, a7 ~ 1 will be the lowest possible
rs value of the EC phase.

The thermal stability of the EC against melting re-
quires that g9 + &4, < W(rs) where the thermal energy
due to activation of the low-lying collective excitations
Eq. (3) is given by

kBTY . (13)

T M 1
Eth (T's) = 12\/'2‘\/; /|6|W" (7'3) ( E,

With increasing temperature, the stability range of the
EC in terms of r; decreases as shown in the inset of Fig.
1. The melting temperature T, < 50 K for |¢|] = 4.0,
and increases even further for stronger confinement. In
3D or 2D a similar behavior cannot be realized, because
there is no additional energy scale apart from the bulk
Rydberg Ey. Moreover, the 1D thermal energy &g, < T2
increases more slowly with 7" than in 3D, where g, o< T4.
The large value of the EC “sound” velocity v, further
improves the stability of the 1D lattice, because &y, o
1/vs. This velocity v, = %c)'k—m is given by

vy (1) = %r.ﬂ VW (rs). (14)

The dependence vs = v; () is shown in Fig. 2.

With a homogeneous resonant optical excitation one
generates rather uniformly distributed Wannier z’s with
essentially no overlap due to Pauli blocking and with a
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FIG. 2. “Sound” velocity vs of the EC versus lattice pa-
rameter r; for two wire parameters given in terms of Eip .
The short-dashed line shows the LA-phonon velocity u in bulk
GaAs.

typically interparticle distance of a few a;p .. If the free
x motion is not suppressed by large interface fluctuations,
the x’s will start to oscillate back and forth between the
nearest two neighboring x’s, because they cannot pass
each other in the QWW. After a few oscillation peri-
ods the z’s will be localized around their quasiequilib-
rium sites of the EC, if the condensation conditions are
fulfilled. One can estimate the crystallization time as
7~ 1/w(k) ~ 1/vsk ~ L/2mvs, where L is the crystal
coherence length. For v; =5 x 10% cm/s, L = 1 um, one
gets 7 ~ 3 ps. This time is smaller than the correspond-
ing z radiative lifetime in GaAs/Gaj—,Al;As QWW’s of
~ 300 ps [16]. The described fast condensation kinet-
ics is specific for quasi-1D systems, and has no analog in
higher dimensions.

The EC condensation should be observable in lu-
minescence along the wire axis. The radiative z de-
cay is determined by the z distribution. In an EC
ng = 2m(1/2 + 1/{exp[fw(k)/kpT] — 1}), where the
first term is due to the zero-point motion, and in a gas
nk = Aexp(—h2k?)/2MkgT, A is a normalization con-
stant. The probability to find an z with the momen-
tum kpy, of the resonant photon is in an EC o ng,, ~
2n[1/2 + kpT/hvskpn]. At T < 10 K this probability
is about 2 orders smaller than in the corresponding gas
phase. Thus, the onset of EC condensation should re-
sult in a drop of the incoherent luminescence. On the
other hand, at low temperatures where only the rela-
tively large zero-point motion remains, the EC is a pure
quantum crystal which is well suited for the emission of
a coherent, short, superradiant light pulse. The most di-
rect proof of the existence of an EC would be (near UV)
light diffraction by the x lattice.

The specific feature of the EC compared to a WEC is
the negative binding energy. Thus, the EC in a QWW
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of finite length z = L needs confinement potentials at
z=0and z = L. In a QWW the surface potentials
are several eV and suffice to stabilize up to 102 z’s in
the EC. Another possibility would be the use of a QWW
ring. In any case the EC as a 1D crystal can only exist
with finite L in order to avoid the destruction by long-
wavelength phonons. The WEC concept implies that an
electron in the lattice retains its identity because of the
negligible exchange effects [3]. Contrary to that situa-
tion, the e-e and h-h exchange effects play an essential
role for the EC. The hybridization of the neighboring x
states gives rise to the appearance of the corresponding e
and h bands. For high x densities, where the increase of
the x energy AE = W +€g + &4 is about Eip,, = —€Ey,
the Heitler-London approximation becomes invalid and
one has to use the linear combination of atomic orbitals
method. For the proposed excitation with circularly po-
larized light, x’s have identical spin structures. Then the
e and the h bands are filled completely with particles
of the given spin orientation. Therefore, the EC is an
excitonic insulator. Within the e and A bands, a sepa-
rate = cannot be identified, but e-h correlations in the
form of the Coulomb-enhancement effect give rise to the
existence of x fragments. These x fragments have to re-
veal a collective crystal-like correlation, i.e., the EC. This
situation resembles that of a biexciton which can be con-
sidered a bound state of two z’s; i.e., there is a strong
e-h pairing to the x state inside the biexciton.

For an EC one can actually realize Mott’s well-known
gedanken experiment [4] to vary the lattice parameter
a continuously, simply by varying the 1D z concentra-
tion. The Mott transition to the metallic state of the
e-h plasma with decreasing a is still an open question
for 1D systems. Most likely, this transition is continuous
because 1D x correlations exist even for arbitrarily small
e-h attractions [17]. This likely suppression of a discon-
tinuous Mott transition is a further advantage of the 1D
e-h system with respect to the EC formation.

So far, we have proposed all z’s have the same interior
spin structure, as it is valid during one spin relaxation
time after the excitation with a circularly polarized light
pulse. In complete equilibrium, the probabilities for e
or h spin up or spin down are equal (as it would be for
excitation with linearly polarized light). Singlet z’s with
opposite spins of the e (h) attract each other and form
biexcitons, which would result in a doubling of the lattice
parameter. In this case an elementary cell of the exciton

molecule crystal (EMC) consists of two e’s and two h'’s,
both of them having the opposite spins. The e-e and
h-h exchange interactions allow the formation of such
an EMC from arbitrary initial e and A spin distributions
along the z axis. A still further increase of the elementary
cell is impossible because biexcitons always repel each
other.
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