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Stability Analysis of Unsteady Ablation Fronts
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The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medi-
um. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity
can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spec-
trurn. The theory is in qualitative agreement with the numerical results obtained by using the two-
dimensional hydrodynamic code ORcH ID.

PACS numbers: 52.35.Py, 52.40.Nk

The classical Rayleigh-Taylor instability [1] occurs
when a heavy fluid is accelerated by a lighter fluid. In
inertial confinement fusion (ICF) the heavy fluid is the
compressed ablated target material that is accelerated by
the low-density ablated plasma. The classical treatment
of the incompressible Rayleigh-Taylor instability leads to
a linear growth rate given by y= J~kg~h, where k is the
instability wave number, g is the acceleration, and 8 is
the Atwood number 2 = (pA

—pt )/(pl, +pt ) (pt and pA

represent the light and heavy fluid densities, respectively).
For typical (ICF) parameters a classical Rayleigh-Taylor
instability would produce an unacceptably large amount
of distortion in the unablated target, resulting in a de-
graded capsule performance with respect to the final core
conditions. Thus, it is important to study the possible
means for suppression of the ablation surface instability
in ICF. It has been recently shown that the ablation pro-
cess leads to convection of the perturbation away from
the interface between the two fluids [2-5]. Since the in-

stability is localized at the interface, the ablative convec-
tion stabilizes short wavelength modes. The typical
growth rate of the ablative Rayleigh-Taylor instability
can be written in the following approximate form [3]:

x =~l kg I
& Pl k V. I, -

where V, is the ablation velocity and P is a numerical
factor (P=3-4).

In this paper we show that a properly selected modula-
tion of the laser intensity can significantly reduce the un-
stable spectrum and the maximum growth rate. To treat
the analytic linear stability of unsteady ablation fronts,
we consider a simplified sharp boundary model consisting
of a heavy fluid, with density pp, adjacent to a lighter
fluid (pt), in the force field g(t) =g(t)ey in a direction
opposite to the density gradient [g(t) (0 and ey is the
unit vector in the direction of the density gradient] and
with an arbitrary time dependence. The heavy fluid is
moving downward with velocity Up = —V,e~ and the
lighter fluid is ejected with velocity UI. The equilibrium
velocities UI(t) and UA(t) are both dependent on the ab-
lation ratio per unit surface m(t), that is, treated as an
arbitrary function of time. The equilibrium can be readi-
ly derived from conservation of mass and momentum.
We consider a class of equilibria with nonuniformities lo-

calized at the interface between the two fluids. Continui-
ty of the mass flow and the pressure balance across the
interface lead to the following conditions:

p!UI(t) =pAUA(t), (2)

(5)rl(t) = t A, [yo(t'), t']dt',

where yo(t') =j,' UA(t")dt" is the unperturbed trajectory
of the fluid element that, at time t, has reached the abla-
tion front. Since the heavy and light fluid extend to
infinity and the instability is expected to be localized at
the interface, the perturbation must vanish at y
A set of jump conditions relating the values of the physi-
cal quantities in the two regions can be derived by writing

PA PI =PIUI (I) pAUA (I ), (3)
where Pp and PI represent the pressure of the heavy and
light fluid, respectively, at the interface. Notice that UI
and Up, are negative in the chosen frame of reference.
We assume that the discontinuities in the equilibrium
quantities can be removed by including the physics of the
ablation process.

The linear stability problem can be greatly simplified

by an appropriate choice of the linearized equation of
state. It is widely known that the most Rayleigh-Taylor
unstable perturbations are incompressible. Furthermore,
ablative stabilization is a convective process and is, there-
fore, independent of the equation of state. It follows that
the essential physics of the instability can be captured
by a simple incompressible flow model. The stability
analysis proceeds in a standard manner. All perturbed
quantities are written as Qt =Q(y, t)exp(ikx) and the
system of equations describing the linear evolution of the
perturbation assumes the following form:

(B, + UgBy) p~ =0, pl(B(. + U~By) t J„=—ikpj,
p, (B,+U, B,)t-„+P,B,U, = —B,&, +P,g, (4)
l k vox + By vly

=0,
where the subscript j denotes the heavy fluid region
(j =h) and the light fluid region (j=l) and By =B/By,
B, =B/Bt The two re.gions are separated by an interface
(the ablation front) that moves with the heavy fluid. The
linear displacement of the interface tl(t)exp(ikx) has to
account for the heavy fiuid ablative convection and can be
described by the following integral equation:

t I
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the time derivative of any perturbed quantity Q at the ab-
lation front as B,Q = —(Qh —Qt) tI&t16(y) and integrating
the equations across the thin ablative layer. A short cal-
culation yields

vhy =vly, (ph pt)(BgTI vhy) Uhph+U(p( =0,
i h„—st„+ikrt(Uh —Ut ) =0, (6)
ph pt+ phUh PIUt +g(ph —

pt ) g =0.
The first of Eq. (6) follows directly from the in-

compressibility condition V. v=0. A better representa-
tion of the perturbation at the interface can be obtained

by using an equation of state and calculating the jump
in the energy [2]. However, when the flow is subsonic

[Uh, Ut «ph/ph, pt/pt], it is easy to show that the flow of
internal energy across the interface has to be conserved
and the incompressible result is recovered.

The solution of the linearized equation in the heavy
fluid region (h ) is greatly simplified by the follow-

ing transformation variable: yh y
—foUh (t ') dt ' A.

straightforward calculation leads to the following form of
the perturbed variables in region h:

pp asymptotically vanish in time. In our asymptotic sta-
bility analysis, we neglect all the quantities that do not
grow in time. Thus, we set a =0 and pp =0. Further-
more, because of the incompressibility condition and neg-
ative Aow velocity, pp =0 at all times.

We apply the same procedure to the light Auid region
(I) and define the new coordinates yt =y —J/iUt(t')dt'.
The solution of the linearized equations in region / can be
written in the following form:

it~ =ut(t)exp(kyt)+b(yt)+c(yt) f(t),
(8)

v~& p~ 8 v~y
&'lx Pl Pl (yt ) Plk ay,

' '
k & atay,

'

where b(yt) and pt(yt) are free functions of yt that van-
ish at yt

—~, and ut (t) is an arbitrary function of t.
The functions c(yt) and f(t) satisfy the following dif-
ferential equations:

d 2 2 p( d.~—k c+k — =0, =G(t),
dy& p~ dE

where

t. h~ =uh(t)exp( —kyh)+a(yh),
t-'hy

yh G(t) =g(t) ——UI (io)
(7)Ph tI i'hy

Ph=Ph(yh), Ph=
Bt&yh

where uh(t), ph(yh), and a(yh) are arbitrary functions of
t and yh, and k is chosen to be positive (k & 0). In order
to satisfy the boundary conditions, a and pp, have to van-

ish atyg ~. Since lim& yp =~, it follows that a and

The next step is to recognize that, using Eqs. (7) in Eqs.
(8), the interface equation can be rewritten in a dif-

ferential1

form: (|I,—k Uh ) ti = t. h~ (y =0, t ).
After substituting Eqs. (7) and (8) into the jump con-

ditions [Eqs. (6)] and using the differential form of the
interface equation, the following ordinary diA'erential

equation for g(t) is derived:

(a, -kU, )G -'[(a, -kU, )(a, —kU, )~+~[kUt(6, —kU )+kg]gJ —Ak U @=0,

rt(t) =g(t) exp —k Uh(t')dt' (i 3)
2

and by neglecting other terms of order 1
—2 (&1. After

some straightforward manipulations, we obtain

dg I dva 1+k Ag —— ——kV /=0,
dg 2 2 dt 4

where g and V, are functions of time with V the ablation
velocity. Observe that, for steady equilibrium config-
urations, Eqs. (13) and (14) yield the normal mode solu-
tion for rt —exp(yt), with y satisfying the dispersion rela-
tion

(14)

y= j'(IkgI~)+ —,
' k'v.' ——,

' Ikv. I.
It is easy to recognize that the contribution of the second
term under the square root is relevant only at very small
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(i 5)

I
where A —= (ph

—pt)/(ph+pt) is the Atwood number. For
ICF applications, the appropriate ordering Uh/Ut =pt/
ph —I —A «1 and g & dUt/8t. To lowest order in 1

—2,
the last term in Eq. (11) can be neglected, yielding

[(a, —kU, )(8, —kU )+A[kU (8, —kUh)+kg]jr=0.

(i 2)
Equation (12) can be further simplified by using the an-

satz

wavelengths, where the mode is already strongly stabi-
lized by convection [the last term in Eq. (15)]. Neglect-
ing such a term in Eqs. (14) and (15) would only cause a
small shift of the cutofl' wave number (Ak, /k, =1/9) that
is consistent with the order of magnitude of the previous

approximations. After neglecting such a term, Eq. (15)
reproduces the numerically derived growth rate of Ref.
[3] with P =1.5. Equations (13) and (14), which are val-

id for arbitrary unsteady configurations, can now be ap-

plied to the particular equilibrium obtained by temporally
modulating the laser intensity. Consider a planar target
of thickness d and density p0 irradiated by a uniform

laser beam. The periodically modulated laser intensity
[I(t) =In(1+Asincoot), A ~ 1] induces an oscillating ab-
lation pressure P, (t) =Pp(1+A& sintopt) and ablation ve-

locity V, (t) =V,p(1+5, sintoot) with A~ ~A and 5, ~A.
For simplicity, we assume that the ablation pressure and

the ablation velocity are directly proportional to the laser
intensity and the ablation process develops on a very slow

time scale compared to an oscillation period and the
sound transit time through the target [V, ((c„c, is the

sound speed]. Although the scaling V, —JI —[1
+csin(toot)]' is more appropriate than a simple linear
dependence, the numerical simulations show that the ab-
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FIG. 1. Plot of the instability drive term p, versus the mode
wave number k for modulated (qWO) and unmodulated (q=0)
laser intensity, assuming d =20 pm, gp=5 & lO'5 cm/s, the At-

wood number A =1, (V ) =7 X 10 cm/s, Tp=0.3 ns, and & =0.

k (pm
—1~

FIG. 2. Plot of the instability growth rate versus the mode
wave number k for modulated (q~O) and unmodulated (q =0)
laser intensity, assuming the same equilibrium parameters as in

Fig. 1.

lation velocity is almost insensitive to the oscillations in

the laser intensity (6, «1) and V, =V p. Ip and Pp are
two slowly varying functions of time [V /d & (1/Ip)dIp/
dt = (1/Pp)dPp/dt «cop —c,/d]. A simple estimate of the
acceleration of the ablation front can be derived by solv-

ing the one-dimensional compressible fluid equations of
Ref. [6] for a target accelerated by the ablation pressure.
The result is

dV.
g(t) =-

dt
—L ~ coth —(d —y, )

s sp. (s),
e, ppes

(16)
where L ' denotes the inverse Laplace transform, s is
the Laplace variable, and p, (s) is the Laplace transform
of the ablation pressure. The quantity y, =fpV, (t')dt' is
the position of the ablation front in the Lagrangian frame
of the moving target. In deriving Eq. (16), the slow abla-
tion time scale (—d/V, ) has been treated as an indepen-
dent variable. A simple expression for g(t) can be de-
rived in the asymptotic limit d/ V, & t »d/c„yielding

g(t) = gp[1 + aslnropt + ecoscppt ], (17)
where gp= Pp/ppd, a:A&(cup—dz/c ) cot(cppd, /c, ), and e
= V~p&~top/gp, d~ =d y . A more accurate estimate of
g(t) (and of the parameters gp, a, and e) can be obtained
by using a one-dimensional code. Later in this Letter we
will use the one-dimensional hydrodynamic code LILAC
[7] to derive gp, a, and e. However, Eq. (17) gives some
physical insight into the relevant quantities that aff'ect the
oscillation amplitude in the target acceleration. In par-
ticular, large oscillations can be achieved for values of the
modulation period shorter than the sound transit time
through the target (Tp= 2rr/top & d/c, ). Bef—ore proceed-
ing further, it is important to define the range of validity
of the stability model for the prescribed equilibrium. The
oscillations in the ablation pressure propagate inside the
target at the sound speed. Thus, the equilibrium parame-
ters can be considered as uniform over a distance Ay
& e Tp. The stability analysis, carried out for a uniform

semi-infinite medium, can be applied to perturbations
with sufficiently short wavelength key & 1. It follows
that a necessary condition for the validity of the stability
model is kc, Tp»1. For such wavelengths, Eq. (17) can
be used in Eq. (14) to derive the function g(t). Thus, Eq.
(14) can be written in the following form:

d'
2

—y, [1+q sin(rupt +&)]g =0,
dt

where y, =JA ~ kgp~ is the classical growth rate, q
=Ja +9e /4, and &=tan '(3e/2a). Notice that Eq.
(18) is a Mathieu equation, whose solution has the form
((t) =o(t) exp(pt), with o(t) being periodic with period
top. Using Eq. (13), the growth rate of the instability can
be easily derived,

Tp
y= —kP „V,(t')dt'+p, (i 9)

Tp

where p=1.5 for the simplified stability model. Howev-
er, when Eq. (19) is compared to the Takabe formula, we
let p=p =3-4. In order to find p, one needs to numeri-
cally solve Eq. (18) for one period of oscillation. Figure 1

shows the parameter p, plotted versus the wave number
k, for the following equilibrium parameters d=20 pm,
gp =5 x 10' cm/s, A = 1, ( V, ) =7 x 10 cm/s, c, = 10
cm/s, To=0.3X 10 s, /=0, and q =0, 2.5, and 3.5.
The validity of the stability model requires k =2tr/k «20
pm. For any value of q and cop, it is possible to identify
intervals of the k axis where Re[p] =0. We denote such
intervals as dynamically stabilized (DS) regions, and we

emphasize the importance of ablative convection [see Eq.
(19)] at shorter wavelengths. According to Eqs. (1) and
(19), the short wavelength modes are stabilized by con-
vection and the cutoff wave number is k, =gA/p V~. It
follows that an efticient dynamic stabilization can be
achieved by choosing values of q and cop that cause the
first DS region to be located inside the interval 0 & k
& k, . In Fig. 2, the growth rates derived from Eq. (19)

for q =0, 2.5, and 3.5 and P=3.5 (as given by Takabe et
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FIG. 3. Comparison of the growth rate obtained from nu-

merical simulations (with modulation 6 and without modulation
0) and the modified Eq. (19). Here, d =18 pm, go=4. 5X 10'
cm/s, (V, ) =7X10 cm/s, T =0.3 ns, P=0, A = I, P=3, 86
=1.5X 10 cm, q=5.5 (dotted), P=4, 08=0.3X10 cm,

q =4.5 (dashed). The solid line represents the Takabe formula
and the shaded area represents the region with kb~ 1.

al. [3]) are shown. Observe that as q increases, a better
stabilization is induced at longer wavelengths, but shorter
wavelengths can be destabilized (q =3.5). This short
wavelength instability is driven by the oscillations in the
acceleration, with the perturbation having the charac-
teristic structure of an oscillatory mode with an exponen-
tially increasing amplitude. For convenience, we denote
these short wavelength modes as "parametric instabili-
ties." Furthermore, when the mode wavelength is smaller
than the density gradient scale length [8=

~ (1/p) dp/
dy~ '], the sharp boundary model is not valid and Eq.
(19) cannot be used.

The results of the analytic theory have been compared
with two-dimensional simulations obtained using the code
ORCHID [8]. We have considered an 18-pm CH planar
target irradiated by a uniform laser beam of wavelength
1.06 pm. The laser intensity is modulated in time with a
period of 0.3 ns. The modulation amplitude is 100%, and
the []at-top average intensity is 50 TW/cm . For an ac-
curate comparison with the analytic stability theory, we
derive the equilibrium parameters g, (V, ), and q, from
the one-dimensional code LILAC [7]. The result is g =4.5
&&10' cm/s, (V, ) =7x10 cm/s, 8=1.5 to 2 pm, p=0,
and q =3.5 to 5.5. In the two-dimensional simulation, an
initial single wavelength perturbation evolves for 3 ns.
Because of the short modulation period, the simulation
shows no significant change in the foil isentrope with
respect to the unmodulated case. Figure 3 shows a com-
parison between the linear growth rate derived from the
simulation, with the one given by Eq. (19). Three regions
of the k axis can be identified: (1) The long wavelength
region with k & 0.2 pm, where the growth rate is virtu-
ally insensitive to the modulation of the laser intensity
and very close to the classical value. (2) The intermedi-
ate wavelength region with 0.2 & k & 1. For these values
3134

of the wave number, the dynamic stabilization is particu-
larly effective. Observe that for X=2tt/k =7 pm, the
mode is completely stabilized. (3) The short wavelength
region is defined as having a wave number k & 1. In this
region k8 & I and the effect of finite density-gradient
scale length cannot be neglected. Notice that the simula-
tion shows the presence of an unstable mode with wave-
length X = 5 pm. Using Eq. (19) beyond its limit of va-

lidity (k6 & 1) and dividing y, by I+8kB with 0 ( 1, we

would predict the existence of parametric instabilities at
shorter wavelengths (Fig. 3). However, the structure of
the perturbation observed in the numerical simulation
does not clearly show the characteristics of a parametric
instability. Furthermore, the cutoA wave number ob-
served in the numerical simulation (with or without laser
intensity modulation) is much shorter than the one pre-
dicted by Eqs. (1) and (19). The stability of very short
wavelength perturbations needs further investigation to
determine an accurate value of the cutoA wave number.

The dynamic stabilization of the Rayleigh-Taylor in-

stability in ICF targets was first observed in numerical
simulations by Boris [9]. In this Letter we have shown
the derivation of the linear stability theory for unsteady
ablation fronts and the conditions for the dynamic stabili-
zation of the ablative Rayleigh-Taylor instability. The
growth rate of the instability has been calculated for a
sinusoidal modulation of the laser intensity. It is shown
that an appropriate modulation frequency and amplitude
can stabilize a large portion of the unstable spectrum and
significantly reduce the maximum growth rate.
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