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Behavior of Solitons in Random-Function Solutions of the Periodic Korteweg-de Vries Equation
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I develop a general approach for computing random fu-nction solutions of the periodic Korteweg-de
Vries (KdV) equation using the inverse scattering transform (IST) in the hyperelliptic function repre-
sentation. I exploit IST to construct realizations of KdV random processes which have power-la~ spec-
tra, k " (k the wave number, y a constant), and uniformly distributed random 1STphases on ( —~, zc).
IST characterizes these realizations in terms of solitons moving in a sea of background radiation and is
thus able to extract solitons, by nonlinear ftltering techniques, from complex, random motions described
by the Kd V equation.

PACS numbers: 47.27.Te, 47. IO.+g

Measurements of nonlinear fluid dynamical systems
often reveal power spectra which have an approximate
power lav' (k r) over a wide wave number or frequency
range. The number of physical examples is too numerous
to list, but includes three-dimensional turbulence, geo-
physical fluid dynamical turbulence, and internal and sur-
face wave motions (see, for example, [1,2] and cited
references). Results of this type have helped motivate the
study of random functions from the perspective of
Fourier and power spectral analysis [3,4], in which one
often writes the space-time evolution of a dynamical ran-
dom process as

u(x, t) = g C„cos(k„x—ro„t —y„).
n=l

C„=j2P(k„)hk, P(k„) is the power spectrum, co„(k„)
is the dispersion relation, and the p„are uniformly distri-
buted random phases on the interval ( —tr, tr); each set of
phases generates a distinct realization of the random pro-
cess (1). Solutions to (1) for power-law spectra, often re-
ferred to as colored random noises, have a fractal dimen-
sion D =2/(y —1), 1 ~ a ~ 3 [5].

In the present paper I consider the possibility of ex-
tending (1) to a particular nonlinear problem, the
Korteweg-de Vries (KdV) equation, which is completely
integrable by the inverse scattering transform (IST) in

(1+1) dimensions [6,7]. This study is motivated by the
fact that IST is a generalization of Fourier analysis to
nonlinear problems [8]. Thus one has the full spectral
structure of IST to aid in understanding nonlinear in-

teractions. In what sense does a nonlinear generalization
of (I) exist for KdV? Can KdV tell us something about
the behavior of solitons in systems with power-law spec-
tra? Can solitons be systematically studied even though
for most of their lifetimes they may not be visible because
of their high spatial density, strong nonlinear interactions,
and/or the presence of background radiation? To address
these and other questions, I consider here a scenario by
which the KdV equation may be viewed as a nonlinear
random process. Random-function solutions to KdV are
defined by means of the mathematical machinery of IST,

which contains several parameters (the IST phases) that
are here viewed as random variables. I give a preliminary
overview of KdV random processes, discuss some of their
properties, and present a numerical example.

This paper may be viewed as a natural extension of the
fundamental work of Zabusky and Kruskal (ZK) [6] who

used the sine-wave initial conditions to discover the soli-

ton, i.e., a delta-function spectrum at t=0. Here I con-
sider the case of random initial conditions with a power-
law spectrum at t =0.

Kd V describes small-but-finite-amplitude, long-wave
motion [9,10]:

tlat

+c0'gx + a rirtx + /3 gx =0' (2)

X =a/6P and the E; (1 ~ i ~ 2N + 1) are constant eigen-
values derived from Floquet theory for the time-
independent Schrodinger equation. Since (3) reduces to
a linear Fourier series (1) in the limit of small amplitude
motion [14] (for particular deterministic values of the
amplitudes and phases in terms of scatterning transform
variables), I refer to (3) as a nonlinear Fourier series
The pj evolve in space according to the following system
of coupled, nonlinear, ordinary diAerential equations
(ODEs):

k
jwk

(4)

Equation (2) governs the space-time evolution of the non-

linear field, tl(x, t), here assumed to be spatially periodic,
rt(x+L, t) =ti(x, t), for 0~ x ~ L, L the period. The
coe%cients of (2) are constant and have values that de-

pend upon the physical application; these include surface
waves, internal waves, Rossby waves, plasma waves,
equatorial motions, and bores [2,8].

The general spectral solution to periodic KdV (2)
[11—13] is written as a linear superposition of nonlinear

ly interacting, nonlinear waves (hyperelliptic functions),

p, (x, t):
N

Xrt(x, t) = —E)+ g [2pj(x, t) —E2J. —E2q+(] . (3)
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dPj =2[—u(x, t)+2p, ]p,', (6)

where pj =dpj/dx is given by (4) and u(x, t) =Xrt(x, t) is
given by (3). The space (4) and time (6) ODEs evolve
the pj(x, t) and the nonlinear Fourier series (3) con-
structs general spectral solutions to periodic KdV.

Each hyperelliptic function pj(x, t) may be written in

terms of phases 4j(x, t), so that Pj(x, t) =Pj[cIrj(x, t)l,
where @j=Kjx —Qjt+Pj [11—13]. (The @j are also the
phases of the associated theta-function inverse problem
for KdV. ) The Kj and Qj are the wave number and fre-
quency, related by a dispersion relation Qj(Kj); the pj
are constant phases [15]. To compute the @j. from the
hyperelliptic functions pj(x, t) one introduces the Abeli-
an diA'erentials

E"dE
k-o R' E

Ckj is a coe%cient matrix with suitable normalization; an
explicit form for the coefficients Ckj is readily found [15].
One then computes the phases by [11-13]

ej(x, t) = g (~, dnj(E) =Kjx —njt+yj,~~] 2m
(8)

where Pm(x, t) = [pm(x, t), crml. Explicit expressions for
the Kj, Aj in terms of the coefBcients Ckj and the main
spectrum E; are given elsewhere [15].

To obtain the phases pj set x =0, t =0 in [8] such that
the upper limit becomes Pk (0,0) = [pt, (0,0), crk] and

Pj =@j(0,0). Therefore the constant phases pj of the
pj(x, t) depend explicitly upon the initial values of the
hyperelliptic functions Pj(0,0), the Riemann sheet in
dices oj, and ihe main spectrum E;. These are the neces-
sary ingredients for integrating the space ODEs (4).

The determination of the main spectrum (E;, 1 ~ i
~ 2N + 1) and the auxiliary spectrum [pj (0,0), crj= ~ 1, 1 ~ j~ NJ is referred to as the direct scattering
problem. The determination of the hyperelliptic func-
tions pj(x, t) by the solution of the nonlinear ODEs
(4)-(6) and the construction of solutions of the KdV
equation by (3) constitutes the inverse scattering prob-
lem. The numerical methods used herein for computing

where 1~j ~N and

2N+ ]

R(P, )= II (Pj Et—).
k

The aj = + 1 are the signs of the square root of the func-
tion R(pj). The pj(x, t) live on two-sheeted Riemann
surfaces; the branch points connecting them are called
"band edges" E2j and E2j+~. The pj lie in the intervals

(E2j,E2j.+~) and oscillate exactly j times between these
limits as x is varied on (O, L). When pj reaches a band
edge the o~ changes sign and the motion moves to the ad-
jacent Riemann sheet. The temporal evolution of the pj
is described by

lV W —]

fj (Pm'Pm~crm) Z Z Dmn(Pmrcrm)Cnj clPj

m=1 n 0
(9)

where

o,o& E"dE
) =()Dmn (Pm, crm ) E (10)

The goal is to solve (9),(10) for p (0,0) given the p
and the o. ; the numerical solution is accomplished by
Newtonian iteration. Given starter values of the

p j ' (0,0) (typically an adjacent band edge, Ezj or

Eqf ~~), iterate the algorithm:

the main and auxiliary spectra, the hyperelliptic func-
tions, and the space-time evolution of the KdV equation
are given elsewhere [14-20]. It should be emphasized
that the computations are made over all N=256 hyperel-
liptic modes in the example given below.

The procedure for computing a solution to KdV is as
follows [15,19]: (a) Pick the hyperelliptic function am-
Plitudes 3, (=E2j+] E2j, 1 ~j ~ N) from a known

spectrum. (b) Pick the hyperelliptic function moduli, mj.
For solitons, choose values near 1, mj —0.99999 and for
radiation choose values which are small, mj —0.1. (c)
Compute the Gj the "gap amplitudes, "

Gj =Aj(1 —mj)/
mJ. Numerically iterate on the GJ to force the wave
numbers Kj to be commensurable as in [15]. This insures
that rt(x, t) will be periodic in space and almost periodic
in time. (d) Select Ei arbitrarily [15,19]. Construct the
main spectrum E; (i =2,2N+1) by E2j =E2j 1+Gj, —

E2j+& =E2j+Aj (j = l,N). (e) Pick the phases pj on

(O, rr) and the Riemann sheet indices, crj = ~ 1. Then
compute the starting values of the hyperelliptic functions
pj(0, 0) by cycle integral inversion [see discussion and
(9)-(11) below]. (f) Construct the hyperelliptic func-
tions pj(x, 0) by integrating the spatial ODEs (4) with
initial conditions pj(0, 0),crj. (g) Construct the solution
of KdV at t =O, rt(x, O), by linear superposition (3) of the
hyperelliptic functions, pj(x, 0). (h) Integrate the reali-
zation forward in time by (6) to obtain the pj(x, t) and
use (3) to get rj(x, t).

In what follows I view the above analytical formulation
of IST as a random process for the KdV equation by as-
suming that the parameters (pj, crj) are random numbers.
One way to obtain random phase realizations of the KdV
equation is to select the phases pj as uniformly distribut-
ed random numbers [in analogy with (1)]. Realizations
may then be constructed using the linear superposition
law (3) together with numerical integrations of (4)-(6).
Since the nonlinear ODEs require the pj(0, 0) as initial
values, we need a way to invert (8) to obtain pj(0, 0)
from the randomly chosen Pj. To this end I assume that
there is no overall bias for one Riemann sheet over the
other so that the oj = + 1 are chosen by a simple coin
toss; these values are assumed known in the inversion pro-
cess. Write (8) in the form (with x=0, t =0):
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N
(i+)) (i)+ gPj Pj

m 1 r)pm
nput Random Realization of KdV, eq. (3)

where the derivatives have an explicit analytical form
[19].

The following observations give some perspective about
KdV random processes: (1) The recipe [(a)-(h)] is
guaranteed to generate exact spectral solutions to the
KdV equation in the sense of IST; each set of random
phases (((i~, aj) generates a different realization of ri(x, t).
(2) In the linear, small-amplitude limit the formulation
reduces identically to (1), as required. (3) The Floquet
band structure is preserved for each realization, i.e., the
hyperelliptic function amplitudes are constants of the
motion, just as the sine-wave amplitudes are constants in
(1). (4) The realizations computed here are forced to be
periodic by constructing a set of commensurable wave
numbers 1(.~ =k~ =2' /L [15]. However, commensurabil-
ity is not a requirement, even in (1) [21]. (5) KdV is a
completely integrable Hamiltonian system with an infi-
nite number of conservation laws. The hyperelliptic basis
functions always remain inside their respective open
bands and the motion lies on a 2N dimensional torus. As
a result solutions computed by this procedure are realiza-
tions of a stationary and ergodic random process [19].
(6) The realizations given herein are nonlinear fractal

fields (or nonlinear colored random noise) in the sense
discussed in [5,22] with dimension D =2/(y —1)—2. (7)
Extension of the present approach to the theta-function
inverse problem is straightforward (and equivalent to that
given here) [19], although several numerical advantages
are obtained from the p representation [20].

The procedure actually used here for determining the
[E;] is slightly different than the general approach just
outlined [steps (a)-(d)l. Equation (1) is implemented
to compute a linear realization of the function u(x, t)
=Ar)(x, O). The power law is taken to be y=2.0 with
nonlinearity parameter 1, =0.012; this case has the same
ratio of dispersion to nonlinearity, 6'=0.022, as used in
ZK. The IST spectrum is then determined from the
space series, ))(x,O), as though it were a Cauchy initial
condition for KdV. Reasons for using this modified pro-
cedure here are (a) to obtain an IST spectrum which
diAers somewhat from a perfect power law, with ampli-
tude variations hopefully similar to what one might ob-
tain in an experimental situation, and (b) to determine
what the KdV equation thinks the hyperelliptic spectrum
is for a perfect linear Fourier power law. Given the main
spectrum [E;I determined in this way [16,20] the com-
puted IST phases have been replaced with random num-
bers as described above and the realization ri(x, O) seen
in Fig. 1(a) is then constructed [steps (e)-(g)]. The am-
plitudes of the inverse scattering (hyperelliptic function)
modes are shown in Fig. 1(c), together with the linear in-
put power spectrum k (note that the spectral ampli-
tudes, not the power spectral amplitudes, are graphed).
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FIG. 1. (a) Realization of nonlinear random process for the
KdV equation, @=2.0, X=0.012. Also shown are the soliton
components as filtered from the realization. (b) The filtered ra-
diation components. (c) The hyperelliptic-function amplitude
spectrum; the input Fourier spectrum and the linear Fourier
transform of the radiation modes (arbitrarily shifted downward
for visual clarity).

The inverse scattering mode amplitudes are scattered
above the input power-law Fourier modes, presumably
due to nonlinear interactions [Fig. 1(c)l. The first nine of
the KdV modes (at low wave number) are found to repre-
sent solitons propagating on a "reference level" which is
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below the mean level [Fig. 1(a)] [141, while the remain-
ing (high wave number) modes represent the radiation
contribution. IST is then used to isolate the soliton com-
ponents of the realization [i.e., only the soliton part of the
linear superposition law (3) is summed, a process called
nonli near filtering [6,20] ]; the resultant soliton com-
ponents of the wave train can be seen in Fig. 1& &.&a&. The
radiation components are shown in Fig. 1(b); these are
found by nonlinearly filtering out the nine solitons by
summing (3) only over the radiation modes in the wave
train. The linear Fourier transform of the radiation
modes shown in Fig. 1(b) is given in Fig. 1(c); the results
suggest that the power-law behavior in the spectrum is
preserved at high wave numbers, but substantial energy is
still found at lower wave numbers.

Since the solitons are not easily visible in the initial
realization [Fig. 1(a)], an interesting question is: Are the
solitons ever visible during their space-time evolution~
To investigate this I integrated the motion forward in

time by (3)-(6) to t =3250000 s and found the results
given in Fig. 2; shown are the integrated realization, the
filtered soliton components, and the filtered radiation
modes. One sees that the largest peaks are found to be
solitons, as verified by the inverse scattering transform.

FIG. 2. Example in Fig. 1 evolved forward in time to
t =3250000 (solid line). Individual soliton peaks are now visi-
ble, whereas they are not in the initial realization rt(x, 0) in Fig.
l(a). Solitons (bold dotted line) are determined from the IST
b filtering out the radiation. Radiation (light dotted line) is
determined by filtering out the solitons.
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