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Self-Organized Criticality in Fragmenting
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The measured mass distributions of fragments from 26 fractured objects of gypsum, soap, stearic
para%n, and potato show evidence of obeying scaling laws; this suggests the possibility of self-organized
criticality in fragmenting. The probability of finding a fragment scales inversely to a power of the mass;
the power, or scaling exponent, was found to depend on the shape of the object rather than on the ma-
terial. For objects of diA'erent shapes (balls, cubes, half cubes, plates, and bars) scaling was found for
fragment sizes smaller than the smallest dimension of the object undergoing fragmentation.

PACS numbers: 46.30.Nz, 05.90.+m, 91.30.—f

The notion of self-organized criticality was put forward
as a general principle for the late state evolution of dy-
namic systems: Correlations will appear on all length
scales, and the system is critical. Global features will not
depend on the microscopic mechanisms [1-3]. One of the
first phenomena to be discussed in this context was 1/f
noise [1]. The Gutenberg-Richter [4] scaling law for
earthquakes has been interpreted as an example of self-
organized criticality [5-8]. Computer simulations [1-3,
9-13] have addressed the concept of self-organized criti-
cality, most notably that part describing the intrinsic be-
havior of sandpiles in which avalanches were found to ap-
pear on all length scales. Experiments carried out on the
sandpile configuration have been inconclusive, and it has
been suggested that the critical state emerges only for
finite systems [14,15]. The propagation pattern for
cracks has been shown to be fractal [16,17] and the
growth of such cracks to be multifractal [18,19]. One
way to understand this is to assume preexisting mi-
crofractures with the necessary properties [20]. Another
model for fragmentation is based on partitioning of larger
pieces into smaller ones. It shows that under certain con-
ditions (a particular value of a tuning parameter) scaling
should be present [21]. The appearance of a fractal size
distribution of crushed ice has been discussed [22], and
the fragmentation of long thin glass rods is shown to fol-
low a log-normal distribution, which can be understood
on the basis of a one-dimensional probability model
[23,24]. The experimental distribution of fragments from
glass spheres is a classic example of scaling [25].

In this paper we report on the observation of power law
distributions of fragments from objects of gypsum. Ob-
jects of diAerent shapes were cast of gypsum by pouring
liquid gypsum into an open mold of the desired shape,
thereby minimizing stresses and strains in the objects. In
particular none of the objects was machined. After dry-
ing at room temperature for about a week the objects
were fragmented by throwing them onto a hard Hoor, or
in the case of especially solid bodies by striking them with
a hammer. To prevent pieces from escaping, the frag-

mentation took place in the center of a large plastic sheet
covering the Hoor. The mass of each fragment larger
than 10 g was measured by an electronic scale, and for
those smaller (down to 10 g) with an analytical bal-
ance. This procedure extended by one decade the range
of masses considered, and it also verified that all frag-
ments larger than 10 g had indeed been collected using
the electronic scale. The number of fragments measured
varied from about 100 to 1000 depending on the size of
the object.

The question that we address is whether the distribu-
tion n(m) describing the probability for finding a frag-
ment of mass m exhibits scaling; i.e., does there exist a
power p such that for an arbitrary length scale a,

n(am) =a ~n(m) .

As measurements of the fracture distribution yield single
events instead of the continuous probability distribution
n(m), it is more convenient to work with the total num-
ber of fragments with masses larger than or equal to m:
f n(m')dm'. lf n(m) exhibits scaling with the exponent
p, then for the integral the exponent is one larger. We
therefore divide the integral by m such that it will show
the same scaling exponent as n(m):

1l'v'(m) =— n (m') dm'.
m & m

Figure I shows a double logarithmic plot of 1V(m) for
a single experiment in which an approximately spherical
gypsum ball of diameter 70 mm was fragmented. The
data follow a po~er law for almost the entire range of
masses; the exponent p is 1.63. Another gypsum ball of
diameter 120 mm gave approximately the same value for
p, 1.60; for a cube 74 mm on edge p was 1.56. Within
the accuracy of the determination (+ 0.05) these num-
bers are consistent. It has been predicted theoretically
and verified in experiments [25] that the exponent for the
accumulated fragment distribution for a spherical glass
ball is ——', . In our notation this corresponds to a p of
1.67, a number not far from that observed.
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FIG. 1. The fragment distribution %(m) obtained from the
fragmenting of a single spherical gypsum ball of diameter 70
mm. Over 4 decades of mass values, the data obey a scaling
law leading to a rectilinear distribution on the double logarith-
mic plot. A least-squares fit to a line gives the estimate 1.63 for
the exponent P.

FIG. 2. The fragment distribution 1V(m) for a gypsum disk,
320 mm in diameter and 5 mm thick. Below a characteristic
mass mo approximately 0.51 g, scaling is obeyed and the ex-
ponent is 1.08. For masses above mo the distribution falls off
more rapidly; we have attributed this to finite size cutoff.

Figure 2 shows N(m) for an experiment with a gypsum
disk 320 mm in diameter and 5 mm thick. Scaling is

present for smaller masses; for larger masses there is a
tendency toward a more rapid decrease in the value of
N(m). We interpret this as a finite size cutoff', but note
that it may also be described within the framework of a
multifractal distribution [26l. The solid line in Fig. 2 is a
fit by

N(m) =cm I'exp( —m/mp),

~here mp is a characteristic finite size cutoff mass and c a
scale factor. In the scaling region (small masses) in Fig.
2, P has a value of 1.08, which is significantly dilferent
from the exponent of the solid ball (—1.63). As the
slopes of the disk and the ball differ, it follows that the
change for m )mp cannot be a dimensional crossover.
Also in Fig. 2 the slope continues to decrease (to below
—1.65) for larger masses. The characteristic cutoff' mass

mp for the fit in Fig. 2 is 0.51 g, corresponding to a
volume of 9x9x9 mm . This means that the scaling
takes place only for fragments about the size and smaller
than the thickness of the disk. Therefore, the scaling is
essentially a three-dimensional phenomenon despite the
two-dimensional nature of the disk on larger length
scales.

Figure 3 shows the fragment distribution obtained for a
bar of gypsum 1080x12&&4 mm The fitted values of P
and mp are 1.05 and 0.19 g, the latter corresponding to a
volume of 6&6x6 mm . Scaling is present for fragments
of size smaller than the smallest dimension of the bar.

In order to check for the dependence of the power on
the way in which the object was fragmented, identical ob-
jects were struck in different ways. No evidence on such
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FIG. 3. The fragment distribution N(m) for a bar, dimen-
sion 1080x 12 x 5 mm . Below the characteristic mass 0.19 g
scaling is obeyed and the corresponding exponent is 1.05.

a dependence was seen. For example, three experiments
with identical plates of dimensions 195x151x-4 mm
were carried out. One was thrown horizontally onto the
floor while the other two were thrown vertically down.
The results of these three experiments can be seen in

Table I. The power P is also given, and within the uncer-
tainties they are equal. For the three identical plates
mentioned above, the masses of the original objects Mp
are listed in Table I; the variation of Mp is caused by
differences in the thickness of the plates. The sum of the
masses of pieces larger than 10 g is called M~ and is

given in Table I. The mass of the measured pieces small-
er than 10 g added together with the mass of the
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TABLE I. Data from three experiments carried out with identical objects of dimensions 195&151x-4 mm . One was thrown
onto the floor horizontally, two vertically, Mo is the mass of the object before fragmentation. Mz is the total mass of the measured
pieces larger than 10 g. Mg gives the value of the mass of the measured pieces smaller than 10 g added to the mass of the
remaining dust and pieces. M.„i;„g is the integrated mass of the scaling distribution from 10 g to 0 g. P is the observed scaling ex-
ponent.

Horizontal
Vertical
Vertical

Mp (g)

69.0+ 0. 1

57.6+ 0. 1

77.0 ~ 0. 1

M~ =pm;, m;) 10 g (g)

68.27+ 0.03
57.03 w 0.03
75.59 ~ 0.03

Ms=pm;, m;(10 g (g)

0.63+ 0.01
0.48 ~ 0.01
1.03 ~ 0.01

M scaling (g)

0.25
0.42
0.74

1.15+ 0.05
1.17+ 0.05
1.20+ 0.05

remaining dust and pieces is denoted Mg and is also given
in the table. Obviously, the sum of all the fragments,
M~+M~, should equal the original mass, MO. Within
the uncertainties, this is true for two of the experiments;
for the third, 0.3 g is missing.

Assuming a power law with exponent P to be present
for all masses down to zero, we have calculated the total
mass to be expected M );pg for pieces smaller than
10 g. This is done by integrating the distribution func-
tion times the mass from 0 to 10 g:

&10 2g
Mscaiing J n(m)m dm .

Og

The results are listed in Table I. As can be seen from the
table, the value of M„,~;„g are all somewhat less than the
experimentally determined Mg. However, if one calcu-
lates which P would correspond to M~, the results are
P=1.20, 1.18, and 1.23, respectively. Comparing these
values with the observed powers P =1.15, 1.17, and 1.20
the discrepancies are accounted for by the uncertainties
in the exponents (~0.05). The conclusion is that the

1.0—
i I I
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FIG. 4. The values of the scaling exponent P obtained for 26
difterent objects as a function of a shape parameter d; d is
calculated from the dimensions of the objects a, b, and c. Data
points for gypsum are given as open circles, for soap as a filled
circle, for stearic paraffin as a triangle, and for deep frozen po-
tato as a filled triangle. The line is drawn to guide the eye.

scaling region need not be confined to the decades mea-

sured here, but could very well continue for smaller frag-
ments.

A possible explanation of the observed variations in the
values of the exponent P is that P depends on the symme-

try of the shock wave and thereby on the morphology of
the object being fragmented. By choosing a sample mor-

phology between that of a bar and plate or a plate and
cube, it is possible to vary P continuously. For instance,
fragmentation of a half cube of dimensions 55.3x74.2
&&74.5 mm gave the power P=1.48. To check for any
dependence on the choice of material, experiments were
performed on soap, stearic paraftin, and potato. The po-
tato was peeled; the stearic paraffin, soap, and potato
were frozen in liquid nitrogen before being fragmented by
a hammer. Within the accuracy of the determination of
the exponents no significant dependence on material was
observed. The dependence of P on morphology for the

gypsum objects as well as the results for soap, stearic
paraffin, and potato are summarized in Fig. 4. To depict
the data on a one-dimensional axis we give a simplified
description of the morphology d = I +2(ah+ac+bc)/
(a +b +c ), where a, b, and c are the lengths of the
three sides. There is a clear correlation between P and

dm-

In summary, we have observed fragment distributions
that obey scaling laws. We suggest that during the short
(but finite) time of the fragmentation process the system
becomes continuously driven, and that the observed
power law is a result of a self-organized critical state [1].
The scaling exponent lies between 1.0 and 1.7, depending
on the overall morphology of the object, rather than on

the choice of material or on the way in which the object
was struck. A bar had the exponent 1.05, a disk 1.08,
and a spherical ball 1.63. These findings may be impor-
tant for understanding the geographical variations in the
Gutenberg-Richter law for earthquakes [27,28]. It is

possible that the morphology of the Earth's crust (the
thickness and width of the geological layer participating
in the crack) plays a role in the geographical variation in

the scaling exponent [27,28].
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