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Routes to Suppressing Chaos by Weak Periodic Perturbations
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A new route is described for eliminating chaos in nonlinear oscillators by changing only the shape of a
weak nonlinear periodic perturbation and illustrated with the example of the DuSng-Holmes oscillator
forced with the Jacobian elliptic function sn. Two techniques are used in the illustration: applying the
Melnikov-Holmes analysis, and studying the behavior of the Lyapunov exponent from a simple recursion
relation which models an unstable limit cycle. The connection with related previously described routes is
also discussed in a general setting.

PACS numbers: 05.45.+b, 05.40.+j

During the last decades, new phenomena have ap-
peared from the inclusion of terms modeling periodic per-
turbations in the equations of nonlinear dissipative sys-
tems. The most ubiquitous is chaos [1]. It is also clear at
first sight from the literature that it is the harmonic func-
tions which have been overwhelmingly used to model the
periodic perturbations. However, these functions are
solutions of linear oscillators, and rarely of nonlinear
equations. Nature is nonlinear, so we should also take
the forcing mechanism to be a nonlinear system since this
is the generic situation. In other words, it seems more ap-
propriate to employ periodic functions that are solutions
of nonlinear oscillators to construct more realistic pertur-
bations. The simplest functions having this requirement
are the Jacobian elliptic functions (JEF) [2]. If one con-
siders polynomials to be the simplest nonlinear extension
of linear oscillators, their solutions are known to be given
in terms of JEF's. This is the case for the most studied
nonlinear integrable oscillators, such as the Duffing or the
Helmholtz. Also for nonlinearities in the form of har-
monic functions, the pendulum, for instance [3], the solu-
tions are in terms of JEF's. In comparison with the har-
monic solutions, the JEF's add a new variable to the pa-
rameter space of the system: the elliptic parameter m
that is responsible for the shape of the perturbation, i.e.,
for the temporal rate at which energy is transferred from
the excitation mechanism to the system, having fixed the
period. This fact leads us to expect new aspects of behav-
ior of the system —unexplored in the harmonic case—when m is varied, the remaining parameters being left
constant.

In this Letter, we show how by altering solely the shape
of a weak external nonlinear modulation, one may pass a
dynamical system from a regular to a chaotic state, and
vice versa. That suggests a possible explanation of some
proposed mechanisms for controlling chaos. From previ-
ous work on the possibility of eliminating or reducing
chaos in a dynamical system [4,5], it seems that the reso-
nant property of the harmonic perturbation causing the

x —x+ax = —6x+ ysn(rot;m), (2)

where 8, y(( I, and sn(cur;m) is the JEF of parameter m.
When m =0, then sn(rot;m =0) =sin(rot); i.e., we recov-
er the extensively studied case of harmonic forcing [6,9].
This is fundamental in comparing the structural stability

regularization of the system is a necessary condition for a
complete regularization. In particular, this is the case for
the model

x+f(x,x) =A sin(cot)+asin(Prot),

where asin(Prot) is responsible for the disappearance of
chaos when a and P are suitably chosen —starting from
chaos at a =0. [See Ref. [4] where f(x,x) =sinx
+Gx —I; G, I constants. ] The resonance condition im-
plies that the two terms on the right-hand side (rhs) of
Eq (I) w. ould belong to the same Fourier expansion of a
periodic function if A and a fit some given conditions.
Such a periodic function should be closely related to some
resonant steady periodic solutions of the associated Ham-
iltonian system —if one is looking for a regular response
of the ~hole equation. Observe that underlying the above
scheme is the generalized nonlinear version (elliptic forc-
ing) of harmonically forced self-exciting systems [6].
Also, both steady and transient solutions of the most
physically relevant, nonchaotic, nonlinear oscillators are
generally given in terms of JEF's [7,8]. We are thus pro-
posing that the inhibition or reduction of an initial chaot-
ic state depends in a fully nonlinear situation on the three
parameters of the periodic perturbation causing the
phenomenon: period, amplitude, and shape (besides, of
course, the initial conditions and the remaining parame-
ters of the system).

To look at the foregoing ideas in a concrete model, we
selected the Duffing-Holmes oscillator [9], partly because
its chaotic transition can be predicted, albeit approxi-
mately, by Melnikov-Holmes analysis (MHA), and part-
ly because this model has been widely studied [1]. The
equation is
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of the system when only the forcing shape is varied. To
this end, we fix the forcing period T =const, making the
frequency ro(m) =4K(m)/T, where K is the elliptic in-
tegral of the first kind. In this situation, the parameter
space of Eq. (2) is four dimensional due to the addition of
the parameter m to the three-dimensional parameter
space (a, 8, y) of the corresponding harmonic counterpart
and we have in the other limit

sn(cur;m = 1) =—g sin [(2n + 1)2nt/T] .
4 1

n n
——p 2n+1

Note that this is the Fourier expansion of the square
~ave function of period T whose shape is not exact1y a
square wave, due to the well-known Gibbs' phenomenon
[10]. In spite of this we can approach Eq. (2) in the limit
m=1 by writing

a(rp) = [—Bu, (t) + yu, (t) sn [co(t + to);m ]]dt,

(3)

Holmes [12]: "This analytical method detects transverse
homoclinic points in diAerential equations which are
small perturbations of integrable systems. This, with the
Smale-Birkhoff homoclinic theorem [9,13], implies the
existence of chaotic motions among the solutions of the
equations in question. . . ." This means, among other
things, that only necessary conditions for chaos are ob-
tained from MHA, and therefore one may always get
sufhcient conditions for the suppression of chaos by using
this tool. This is the principal foundation of the utility of
MHA in predicting the inhibition of chaotic behavior
[14].

For Eq. (2) the Melnikov distance is

x —x+ax +8x —y=0, 0&r & T/2 (modT),
x —x+ax +8x+ y=0, T/2 & t & T (modT) .

(2')
where

x, (t) =(2/a) ' secht, u, (t) = —(2/a) '~ secht tanht,
Now, we choose the parameters a, 6, and y to be con-

stant, and vary m from 0 to 1 to study the pure effect of
variations in the shape of the perturbation. We are here
mainly interested in the stability of chaos under these
changes, so we apply MHA to Eq. (2). This method is
now a standard procedure [9,11]. To quote Brunsden and

(4)
are the parametric equations of the homoclinic loop cor-
responding to the hyperbolic fixed point of the DuSng-
Holmes equation with B=y=0. Using the Fourier ex-
pansion of sn [2], and after some simple algebraic manip-
ulation, Eq. (3) can be recast into the form

A(tp) = —(28/a)„t sech ztanh zdz —y(2/am) '~ (x/K) g csch[(n+ I/2)xK'/K]cos[(n+I/2)zuotp/K]
n=p

(5)sech z sinhz sin[(n+ I/2)xroz/K]dz,X

with K' the complementary complete integral of the first kind. The resulting integrals can be evaluated from standard
integral tables [15]. Finally, we obtain

COÃ
OO I

A(tp) = —(48/3a) —
y 2,&2 g (2n+ I) csch (n+ I/2) sech cosK (2am)'~ n p= K 4K

(2n+1)error p

2K
(6)

From Eq. (6), with rp(m) =4K(m)/T, it is straightforward to demonstrate that a homoclinic bifurcation is guaranteed
for trajectories whose initial conditions are sufficiently near the unperturbed separatrix (4) if

8/y & U(a, m, T),
where the threshold function is

i/2
t 2n+ IU(a, m, T) = — g (2n+1) csch (n+1/2) sech2TK m n=p

(7)

(8)

With T and a constant, we study the chaotic threshold as
a function of only the forcing shape parameter m. A typ-
ical plot of U(m) is shown in Fig. 1. The qualitative
form of this function remains the same as a and T are
varied. It is illuminating to consider the limit case rn = l.
From Eq. (8) we obtain

U (a, m = 1,T) = (6iz42a/T ) g sech [(2n + I ) /Tiz],
n=0

with lim, U(a, m = I, T) =0; i.e., in this limit chaotic

behavior is not possible. This result is consistent with
well-known results concerning the related harmonic case
[9]. Thus, observe that when T ~ the system (2') is
well represented by the equation x —x+ax +Bx=y,
which is likewise the limit of the familiar system x —x
+ax +8x=ycosmt when m 0. For this equation the

3

threshold function is [9] U'(a, co) = (342a/4)xcosech(izcp/
2) with lim„pU (Q, co) =0, and we find again the impos-
sibility for the onset of chaos. Also, for m=0 we have,
from Eq. (8),
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FIG. 1. Threshold function U(m) versus m [Eq. (8)] in a
generic situation, the remaining parameters being held con-
stant.

FIG. 2. Function U'(m) versus m [Eq. (11)].

periodic perturbation given by the JEF sn:

(9)
U(a, m =O, T) =(3x 42a/2T) sech(z /T) .

In summary, the threshold functions U(a, m, T) for
fixed a, thought of as functions of T only, have the
same qualitative shape for every m E [0, 1]: They are
positive functions with only one maximum, and satisfy
limT p U(a, m, T) =0. Straightforward calculation
shows that the degree of agreement between the theoreti-
cal chaotic threshold, Eq. (8), and numerical experiments
is the same for m 1 as for other m values. In other
words, the case m 1 (square wave) is not qualitatively
different from the harmonic case (m =0).

Let us suppose that the system (2) is in a regular state
denoted by 2 (see Fig. 1). Then, increasing m from m 1

to m2, and keeping constant the remaining parameters e,
T, 6', and y, the system may reach a state (point 8) cap-
able of being chaotic. Contrariwise, if 8 represents a
steady chaotic state, the route 8 2 regularizes such a
state. Now, fixing a, T, and m we can increase the ratio
8/y (raising 6, decreasing y, or both) reaching a regular
state at point C: This is a known procedure for taming
chaos [9,11]. Note that the pathways of types 8
and 8 C are only ad hoc routes to regular states, the
most common being a simultaneous variation of 6/y and
m, as in the paths 8 D and 8 E. In our opinion, this
is exactly the scenario behind the inhibition of chaos by
weak harmonic perturbations. Indeed, in Eq. (1) the res-
onant condition implies that P =n/m, n, m e Z, i.e., both
sines have a common period T=2nm/co and the addition
of asin(Prot) to csin(cot) has the eAect of varying both
the amplitude and the shape of the original forcing term.
Therefore, it is possible that taking the appropriate a
value in addition to the resonance condition the system
may reach a regular state (as observed in numerical ex-
periments, cf. Ref. [4]).

The relevance of the coexistence of infinitely many
periodic unstable solutions is today quite clear, and is
considered synonymous with steady chaos (strange at-
tractor), so that we may test the above scheme by the
model of an unstable limit cycle affected by a weak

Re(1 (np+ef„)). (10)

If the limit cycle is weakly unstable p =1+ iBi, i8i &(1.
In this situation, for small c, Eq. (10) becomes X =i6i
—e U'(m)+O(e ) with

U'(m) = 2 E
m E

A plot of U'(m) is presented in Fig. 2 (observe the simi-
larity with Fig. 1). When iBi ( e U'(m), the LE X is

negative, i.e., x is stable. On the contrary, if i Bi
& e U'(m), k is positive and x is unstable. In order to

clarify the effect of shape on the reduction of instabilities
(positive LE), let us consider that we are in an initial
state characterized by e=ei, m =ml —0 such as i6i
& e|U'(mi). Then, by increasing m, the LE X decreases
and, in some case, may become negative, thus stabilizing
X.

A complete understanding of all this would, of course,
involve obtaining resonant periodic solutions of the gen-
eral problem

x+f(x,x) =A pq(cur;m), (12)

where f(x,x) is a nonlinear function, and pq is a 3EF
closely connected to the solutions of the associated Ham-
iltonian system. In a forthcoming paper, we wi11 present
a more detailed study, including numerical experiments.

The analysis based on Eq. (2) can be developed in

with p & 1, f„=&2s n(2 K/xn;m), i.e., for simplicity, we
have chosen the period T=2z. A similar recursion rela-
tion with f„a harmonic function is considered in Ref. [4].
Note that (f„)=0, and (f„)=(2/m)(l E/K), —with E
the complete elliptic integral of the second kind, angular
brackets denoting the average over n. If m 0, (f„) 1

as in the harmonic counterpart. When t. =0, the fixed
point x is unstable. To study the effect of the weak
modulation, we calculate the Lyapunov exponent (LE)
for t. &0:
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three important ways [16]. First, the results extend to
general modulated dynamical systems x =F(x) near the
onset of chaos. Second, the modulation ysn(cot;m) need
not enter additively, as in Eq. (2), but can enter instead
as a parametric modulation. Third, the parameter m ex-
tends the codimension-I bifurcation (saddle-node, trans-
critical, pitchfork, period-doubling, and Hopf, typically
encountered as a single control parameter is varied) to
new codimension-2 bifurcations.

In summary, we have presented a new way to reduce or
suppress steady chaotic states, by only altering the ge-
ometrical shape of weak periodic perturbations. We con-
nected it with related known mechanism in a general con-
text. Finally, using a simple model recursion relation, we
found the same new route to order.
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