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Identical Bands in Superdeformed Nuclei: A Relativistic Description
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Relativistic mean field theory in the rotating frame is used to describe superdeformed nuclei.
Nuclear currents and the resulting spatial components of the vector meson fields are fully taken into
account. Identical bands in neighboring rare earth nuclei are investigated and excellent agreement
with recent experimental data is observed.

PACS numbers: 21.10.Re, 21.60.Ev, 21.60.Jz, 27.70.+q

Since the experimental discovery of superdeformed
bands in rapidly rotating nuclei, many unexpected fea-
tures of these highly excited configurations have been ob-
served (for a recent review see Ref. [1]). One of the most
striking properties is the existence of so-called identical
bands or ttvin bands, i.e. , nearly identical transition ener-

gies E~ of the emitted p radiation in bands belonging to
neighboring nuclei with different mass numbers. In a con-
siderable number of nuclei in the Dy region as well as in

the Hg region one has found differences in E~ of only 1—3
keV; i.e., there exist sequences of bands in neighboring
nuclei, which are virtually identical, AE~/E~ 10
Since these transition energies are directly related to the
corresponding dynamical moments of inertia obeying on
the average a simple A5/ dependence, one would have
expected changes of 1 order of magnitude larger.

Several groups have tried to understand this phe-
nomenon by means of conventional investigations within
the framework of the semiphenomenological Strutinski
method in connection with a rotating Nilsson or Saxon-
Woods potential [2,3]. It has been pointed out that the
difFerent single particle orbits can give rather different
contributions to the moment of inertia. This is most
clearly seen in the simple oscillator model, where or-
bits with oscillator quanta along the rotational axis have
vanishing angular momentum operator matrix elements.
Other groups [4] realized that a new coupling scheme in

nuclei exists, the so-called pseudospin scheme, which to
a very large extent decouples the pseudo-orbital motion
from the pseudospin degrees of freedom and favors the
strong coupling limit. In all these investigations, how-

ever, polarization efFects, which are expected to produce
much larger changes of the moments of inertia than those
observed in identical bands, are either neglected com-

pletely [4] or taken into account only partially by mini-

mizing the rotating energy surface with respect to a few

deformation parameters.
We therefore feel that it is very important to carry

out fully self-consistent microscopic calculations, where
all the degrees of freedom are taken into account. Such
calculations are not simple, but they are nowadays fea-
sible. A first investigation of this type using the density
dependent Skyrme III force has very recently been car-
ried out in the Hg region [5]. It has been found that

full self-consistency has indeed a considerable inHuence
on the details of the moment of inertia in neighboring
nuclei. There are, however, many important questions
still open. In these nuclei identical bands occur in a
spin region where pairing plays an important role. Since
particle-particle correlations are not very well described
within the Skyrme scheme, it is not at all clear to what
extent the present deviations of the theoretical from the
experimental results can be understood by such deficien-
cies.

The present investigation is therefore devoted to the
Dy region, where superdeformed bands are observed up
to very high angular momenta. At these very large rota-
tional frequencies the Coriolis-antipairing effect reduces
these correlations considerably, such that they have little
inHuence on the moment of inertia. We use a relativistic
field theory which includes o, w, and p mesons as well

as the electromagnetic field. In addition we consider a
nonlinear self-coupling of the o field. We use the pa-
rameter set NL1, which has been adjusted [6] to nuclear
matter and a few spherical nuclei. This parameter set
has turned out to be very successful for the description
of many ground state properties over the entire periodic
table [7]. In particular one has found excellent agreement
with ground state deformations in open shell nuclei. The
rotation is treated within the cranking approach, in ac-
cordance with the concept of a mean field description.
This leads us to a relativistic self-consistent cranking the-
ory (RSCC) as developed in Ref. [8].

In the rotating frame time reversal invariance is bro-
ken. This leads to nucleonic currents in the interior of
the nucleus, which form the source of magnetic potentials
in the Dirac equation (nuclear magnetism). In this way
the charge current j, is the source of the normal mag-
netic potential A, the isoscalar baryon current j~ is the
source of the spatial components w of the ~ mesons, and
the isovector baryon current j3 is the source of the spa-
tial component p3 of the p mesons. In contrast to the
Maxwellian magnetic field A having a small electromag-
netic coupling, the large coupling constants of the strong
interaction cause the fields w and p to be important in
all cases, where they are not forbidden by symmetries,
such as time reversal. They have a strong influence on
the magnetic moments [9] in odd mass nuclei, where time
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reversal is broken by the odd particle, as well as the mo-
ment of inertia in rotating nuclei, where time reversal
is broken by the Coriolis field. In an early investiga-
tion of rapidly rotating superdeformed nuclei within the
framework of cranked relativistic mean field theory [10]
these components were not taken into account for rea-
sons of numerical simplicity. Strong deviations from the
experimentally observed moments of inertia were found.
Only the size of the quadrupole deformation was repro-
duced properly. Semiclassical corrections turned out to
be large, but could not reproduce the proper experimen-
tal values of the moment of inertia.

In this investigation nuclear magnetism is taken fully
into account in a self-consistent way. Starting from the
Lagrangian

1
P —g /+gpss ~ ——e(1+rs)g —g~o. —Miv

~ g

1+-0 aO"cr —U(rr) — A„A"-+ m~„~-"

(1)

where Miv is the bare nucleon mass and @ is its Dirac
spinor. We have in addition the scalar meson (o),
isoscalar vector mesons (wi'), isovector vector mesons
(p"), and the photons A", with the masses m, m, and

m~ and the coupling constants g, g~, gz. For simplicity
in the following equations we neglect the p meson and
the photon. In the calculations these contributions are,
however, taken into account. The field tensors for the
vector mesons are given as

~pv = pav vip .

For a realistic description of nuclear properties a nonlin-
ear self-coupling for the scalar mesons has turned out to
be crucial [ll]:

for vector fields with spin 1. For details see Ref. [8].
These equations are solved self-consistently by expand-

ing the Dirac spinors as well as the meson fields in terms
of eigenfunctions of a deformed oscillator, as discussed
in detail in Refs. [7,8]. Up to N~ = 13 major oscillator
shells were taken into account for the large components
of the fermion fields and up to N~ ——13 shells for the
meson fields. Because of the large number of configura-
tions in this space high-lying orbitals with a deformed
oscillator energy larger than 10.3 x Ruo for the fermions
and larger than 10.5 x huo for the bosons have been ne-
glected. In general one has to allow for complex expan-
sion coefficients in this basis. However, assuming mirror
symmetry at the three planes (2:,y), (x, z), and (y, z) for
the densities and rotational symmetry for the currents it
is possible to restrict oneself to real coefficients. Since, in
the rotating frame, there is no a priori reason for these
symmetries, a complex code was used to show that, even
with initial conditions strongly violating these symme-
tries, we find after many iterations final self-consistent
solutions which obey these symmetries. All the following
calculations have therefore been carried out with the real
code only.

In Fig. 1 we show the static and the dynamic mo-
ment of inertia for the lowest superdeformed band in
the nucleus 2Dy as a function of the angular momen-
tum. It is clearly seen that a calculation without nuclear
magnetism, i.e. , without the spatial contributions of the
vector meson fields, which is in good agreement with
the experimental quadrupole moments (see Ref. [10])
produces much too small moments of inertia. A semi-
classical correction where these contributions, derived in

90.0

U(o) = —m cr —o —o
1 2 2 g2 3 g3 4

2 +3 +4 (3)
70.0

ooo&&«»~~~vvvvv~oo

Starting from this Lagrangian and transforming to a
frame rotating with a uniform velocity A~ around the x
axis perpendicular to the symmetry axis of the deformed
nucleus in its ground state, we obtain the classical equa-
tions of motion

(o. (p+ g ~) + g ~o + P(M + g.o) —A.J.)4

90.0

70.0

ooo~o ~444OO

for the nucleon spinors and

(4) (b)
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(—E+(AL ) )cr + U'(o)= —g p, ,

(-~+(n.l..)' + ~2) o =g.,„,
(—4+(0 J ) + m2)~ =g„j,

(5a)

(5b)

(5c)

where J = I~+ S and the spin operator S~ is a 4 x 4
matrix. for the spinor fields with spin 2 and a 3 x 3 matrix

l/0

FIG. 1. (a) Static (J' ) and (b) dynamic (J'~ ~) moment
of inertia for the lowest superdeformed band in the nucleus

Dy. The dashed line corresponds to the calculation without
the spatial contributions of the vector mesons. In the dotted
line such contributions are taken into account in a semiclassi-
cal way and the full line represents the self-consistent solution
including these contributions fully.
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TABLE I. Binding energy E, mass quadrupole moment
Qp, dynamic (Q ), static (Q ), and rigid body (Z„~) mo-
ment of inertia at the angular momentum I = 50h for the
superdeformed band in Dy and relative changes of these
values (given in %%uo) several bands in the neighboring nucleus

Tb at the same angular momentum.
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FIG. 2. Single-proton spectra in the self-consistent rotating
potential of the superdeformed band in Dy as a function
of the cranking frequency 0 . For small values of 0, where
the two signatures are nearly degenerate, we indicate the ap-
proximate Nilsson quantum numbers.

Thomas-Fermi approximation using a rigid rotor current,
are taken into account in first order perturbation the-
ory overemphasized the moments of inertia by roughly
10%. Only if one takes these contributions into account
in a fully self-consistent way is perfect agreement with
experimental data achieved. In the region of small an-
gular momenta one still observes very small deviations,
which could possibly be understood as the influence of
remaining pairing correlations in this region of interme-
diate spins.

We also find that nuclear magnetism has practically
no influence on the shape of the nucleus. The mass
quadrupole moments decrease in the spin range from 205
to 606 only very little, running from 4350 to 4260 fm and
the corresponding hexadecupole moments change for the
same region from 20 600 to 19600 fm4. The changes in-
duced by nuclear magnetism are of the order of a few
per mille. The average charge quadrupole moment is
found to be 18.6 e b, which is in good agreement with a
value of 18 eb obtained in a nonrelativistic calculation
[12], and the experimental value of 19 eb [13]. From
the quadrupole moments we can derive the Hill-Wheeler
parameters P = 0.72 and p = 0.7' for the quadrupole de-
formations, which corresponds closely to a nearly prolate
deformed nucleus with an axis ratio of 1:1.9, close to the
standard value 1:2 of the harmonic oscillator model.

Let us now investigate the problem of identical bands.
For this purpose we calculate, in a self-consistent way,
bands in the neighboring nucleus Tb by removing one
proton from the 5 Dy core. In Fig. 2 we show the single
particle spectrum for protons in the rotating potential
formed by the 52Dy core. The large gap at Z = 66
is clearly recognized. Taking particles out of the orbits
directly below this gap, we can produce difI'erent bands

in the nucleus Tb. They have the quantum numbers
(PS) of parity (P) and signature (S), namely, (+—) for
the dashed line, (++) for the full line, (—+) for the dot-
ted hne, and (—+) for the dash-dotted line.

The proton hole induces a polarization of the is2Dy
core, which has two efFects: it leads to changes of defor-
mation and in addition to changes in the current distribu-
tion. In Table I we show the values obtained after solving
in a fully self-consistent fashion the relativistic mean Geld
equations for the odd system in the four lowest configu-
rations. We show the values for several observables for
the lowest superdeformed band in ~52Dy. The relative
changes with respect to this reference band in the four
bands of is Tb are given in per mille. According to the
simple A i rule we expect changes in the moment of in-
ertia by = 11 per mille. The calculated values for the
moments of inertia J' and J' for the band with the
quantum numbers (—+), which we shall in the following
call the identical band, are, however, at least an order of
magnitude smaller. This is by no means trivial, because
we find considerably larger changes in the quadrupole
moments and in the rigid body moments of inertia. In
fact in most of the other bands the changes are also much
larger.

In order to have a direct comparison with the ex-
periment we show in Fig. 3 the difI'erences 4E~
E~(Tb) —E~(Dy) between the transition energies in sev-
eral bands in the nucleus s Tb and in the lowest superde-
formed band in Dy. The agreement with the experi-
mental value is excellent for the band with the quantum
numbers (—+), where the energy differences are of order
of 1 keV. As we see in Fig. 2, this band corresponds to a
hole in the orbit with the approximate Nilsson quantum
numbers [301]zi —.This orbit has a very small number of
oscillator quanta along the z axis (the symmetry axis),
which yields nearly vanishing contributions to the mo-
ment of inertia. We are therefore in agreement with the
qualitative argument put forward in Ref. [14]

This is, however, not the full story. In order to investi-
gate the very good quantitative agreement, we have car-
ried out two additional calculations in Fig. 4 for the iden-
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FIG. 3. Differences AE~ in the transitional energies
E~ = E(I) —E(I —1) between the lowest bands for each
pair of quantum numbers (P, S) in the nucleus Tb and the
superdeformed band in Dy are compared with experimen-
tal values for the excited superdeformed band with negative
parity in Tb.

FIG. 4. Differences AE~ for the identical band with the
quantum numbers (—+). The fully self-consistent solution
(full line) and solutions neglecting nuclear magnetism (dashed
line) or polarization induced by the proton hole (dash-dotted
line) are compared with the experiment (full dots).

tical band with the quantum numbers (—+): First we ne-
glected the polarization induced by the proton hole; i.e. ,

we calculated the energy differences for wave functions for
the nucleus Tb obtained from the Dy core by just
removing one proton, without requiring self-consistency
for the odd mass configuration. In this case we find the
dash-dotted line in Fig. 4, which is in sharp disagreement
with the experimental data. Next we took into account
the polarization, but we neglected nuclear magnetism,
i.e. , the contributions of the spatial components of the
vector meson fields, and find the dashed line in Fig. 4,
which is also in disagreement with experiment.

We therefore conclude that a very delicate cancella-
tion process occurs in identical bands in superdeformed
nuclei. Polarization of the quadrupole moments and of
the density alone would induce changes of the order of 5—
10 per mille. Neglecting nuclear magnetism would also
lead to changes of this order of magnitude. Obviously
both act in opposite directions, such that the final dif-
ferences are only in the order of 1 per mille. So far the
precise mechanism for this cancellation is not fully un-
derstood. It requires definitely much more systematic
investigation. Nonetheless it seems to us a very satisfy-
ing and surprising result that without any free param-
eter, and simply using the set NL1 adjusted to nuclear
matter and a few spherical nuclei, long before identical
bands had been identified, we can obtain this degree of
accuracy in the relatively simple minded relativistic mean
field approach. We have to emphasize, however, that full
self-consistency as well as the inclusion of the nuclear
currents are very important in this context.
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