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Scaling Study of Pure Gauge Lattice QCD by Monte Carlo Renormalization Group Method
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The scaling behavior of pure gauge SU(3) in the region P =5.85-7.60 is examined by a Monte Carlo
renormalization group analysis. The coupling shifts induced by factor 2 blocking are measured on both
32 and 16 lattices with high statistics. A systematic deviation from naive 2-loop scaling is clearly seen.
The mean field and effective coupling constant schemes explain part, but not all, of the deviation. It can
be accounted for by a suitable change of coupling constant, including a correction term O(g ) in the 2-

loop lattice P function. Based on this improvement, Jo/A~~z is estimated to be 2.2+ 0. 1 from the
analysis of the string tension 0..

PACS numbers: 11.15.Ha, 12.38.6c

Since a confirmation of the approach to the continuum
limit has basic importance in lattice quantum chromo-
dynamics (lattice QCD), systematic scaling analyses at
larger P are inevitably required. Recent analyses have
shown that scaling violations persist in physical quantities
such as the string tension and hadron masses up to P =6.8
[1]. On this problem, it has been argued that a suitably
chosen coupling constant reveals per turbative scaling
[2-6].

Monte Carlo renormalization group (MCRG) analysis
tells us the coupling shift AP induced by scale transfor-
mation of the lattice spacing, a sa [7]:

dg f( I /g (13
—AP) ')

s =exp (1)
gttt) Pf(g) f( /gI(p) )

where f(l/g ) =aA and Pf(g) is the lattice P function.
(For bare lattice coupling constant, I/g =P/6). This
gives us another way to examine the scaling behavior of
lattice QCD. In SU(3) lattice gauge systems, MCRG
has been performed by several groups on 16 lattices in

the large P region up to 7.2 [8-12]. However, these re-
sults were inconclusive and even controversial. Although
Gupta et al. [11] have claimed consistency with asymp-
totic scaling from their J3 blocking result, Bowler et al.
[9,10] have found sizable deviations from 2-loop scaling.
Recently Hock has reanalyzed the same data and claimed

a very slow approach to scaling [12]. These varied con-
clusions are mainly due to the difticulty of obtaining a
precise value for the coupling shift in the high P region,
because the deconfining transition prevents an accurate
matching between Wilson loops on a small lattice. Stud-
ies on larger lattices with better statistics are required to
clarify the scaling behavior in the high P region.

In this work, we report results of an MCRG study and
scaling analysis in the high P region on both 32 and 16
lattices with high statistics.

Using a 32 lattice gives us the following advantages.
(i) One more blocking level than previous works. It is

not a priori clear that blocking from 16 to 2 is suScient
for loop matching. A deeper blocking is preferred to
confirm good matching and for closer matching condi-
tions.

(ii) We remain in the confinement phase up to P —6.9
whereas a 16 lattice is above the deconfining transition
point for P & 6.35.

The numerical simulation has been performed on the
512-cell parallel processor Fujitsu AP1000 [13]. Three
lattices of size 32, 16, and 8 are generated by the over-
relaxed pseudo heatbath algorithm [141 (the mixing ratio
of overrelaxation to pseudo heat bath is 9:1 in average).
Blocking is performed every ten updates. 2-3 K
configurations are blocked at each P (more near the
deconfining transition point). For error estimation, the

0031-9007/93/71 (19)/3063 (4)$06.00
1993 The American Physical Society

3063



VOLUME 71, NUMBER 19 PH YSICAL REVIEW LETTERS 8 NOVEMBER 1993

1x1 1x2

I

I

I

I
f
I

I

I

2x2 chair sofa twist

0.65

0.6

0.55

bare g~ I-I"
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jackknife method is applied. We monitor autocorrela-
tions of blocked Wilson loops in those measurements to
know the statistical validity of sampling (see Fig. 3).
Near the deconfining transition point, two more con-
figurations are blocked. The efIect of long autocorrela-
tion there is taken into account in the error estimation.
Details of the prescription will be presented elsewhere.

In this work, the Swendsen blocking transformation is

used to double the lattice spacing (s=2) [15]. Blocking
is repeatedly performed down to 2 for two lattices, one
of size L (at P) and the other of size L/2 (at P —AP). To
match long range physical contents on both lattices, a set
of Wilson loops on one blocked lattice is compared with

the corresponding one on the other blocked lattice. For
early matching between blocking trajectories, the block-
ing transformation is controlled by a parameter q which

governs the size of Gaussian fluctuations around the max-
imal SU(3) projection of the block link variable [16].
The coupling shift AP is determined at the value of q
where the mismatch of the two sets of Wilson loops is

minimum. Planar 1x1 and 1 x2 Wilson loops and non-

planar 6-link ("twist" and "chair") and 8-link ("sofa")
loops are measured on blocked lattices at q =0.0,
0.02,0.04 for this purpose (see Fig. 1). A brief descrip-
tion is found in our previous report [13].

AP at P=5.85-7.60, measured by matching 16 and 8

lattices after three blocking steps, is shown by open cir-
cles in Fig. 2(a). Improved statistics give a clear sys-
tematic behavior for the new data in comparison with
those of previous works [Fig. 2(b)] although they are
consistent. The data are significantly below the 2-loop
scaling result (solid curve). Therefore naive 2-loop scal-
ing does not hold in this region. The deviation rapidly de-
creases as P increases. But, even at P=7.60, 10% devia-
tion remains.

A notable feature of the present data is the following.
For P (6.3, the quality of the data is sufficient and shows
the approach to the 2-loop scaling result. On the other
hand, the data above P =6.3 suffer relatively large errors.
The matching of blocked Wilson loops becomes di%cult
in this region. This difticulty is caused by the deconfining
transition on the 16 lattice [17]. As shown in Fig. 3, the
autocorrelation time of blocked Wilson loops sharply
peaks at P =6.35+ 0.05 (on an 8 lattice P =5.90). An
increase of Auctuations of the blocked Wilson loops is
also evident at this point. Thus, the 16 lattice turns into
the deconfining region at this point. It is noted that the
value P =6.35 is smaller than the previously expected
value 6.45 ~0.05 from an analysis of the finite tempera-
ture phase transition [18]. Above this P, Wilson loops are
dominated by perturbative contributions and the match-
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FIG. 2. Coupling shift hP measured in this work (a) and
that in previous works (b). Solid curve shows 2-loop asymptotic
scaling with bare coupling constant.
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ing suAers large errors.
Matching between 32 and 16 has been tried at

P=6.35-7.00. The deconfining transition point on a 32
lattice is pushed up to around P =6.9 since the coupling
shift is =0.54 in this region and the deconfining transi-
tion point is P=6.35 on a 16 lattice. At P=6.35, 6.55,
6.65, and 6.80, where the lattice is in the confinement
phase, the matching can be performed successfully and
the resultant coupling shifts after three and four block-
ings agree within error as shown in Fig. 4. Thus, the data
become stable for blockings greater than three and this
fact gives reliability to the 16 lattice (three blockings)
measurements.
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FIG. 5. Coupling shift reproduced by different coupling con-
stant schemes. Notations are described in the text ~

f2(x) =x

x = I/gMs

where ho=33/48m and bi =(102/121)bp. As shown by
curve M in Fig. 5, this scheme partly explains the present
MCRG data. Similarly, the eA'ective coupling constant

g, improves the agreement somewhat, as shown by curve
E in Fig. 5.

However, a sizable deviation still persists between these
schemes and the present data. Therefore we need a
diAerent prescription to approach the continuum limit
from the presently accessible region of p. In Refs. [2,3],
to get the continuum limit, a linear or bilinear extrapola-
tion in terms of the lattice constant a was assumed for
physical quantities expressed in units of AMs while the
authors of Ref. [6] used a linear extrapolation in I/lna.
Here instead, the continuum limit is extracted by taking
into account the lattice p function and expressing our

The measured coupling shifts [black circles in Fig.
2(a)] are naturally connected with those of p( 6.35 on

the 16 lattice. Thus, a systematic deviation from naive

2-loop scaling in this region is further confirmed by these
measurements.

At P =7.00 where the 32 lattice is above the
deconfining transition point, definite data could not be ex-
tracted from our 3 K blocked configurations (30 K
sweeps) due to very long range IIuctuations.

Although a trend to approach the 2-loop scaling value
is seen, the coupling shift shows significant deviation.
This deviation can be partly absorbed by a mean field

scheme [2,3] or an effective coupling constant scheme
[4-6]. In the mean field scheme, the modified-minimal-
subtraction (MS) coupling constant is given by
I/gMs(&/a) =(U~i, q)/g +0.025 where (U~l, q) is the
average plaquette. Similarly the eN'ective coupling con-
stant is defined as g, =3(1 —(U~i,q)). Both coupling con-
stants are obtained here based on our measurement of
(U~i,q) at p=5.70-7.60. The coupling shift is calculated
assuming the 2-loop scaling form for gMs [19],

'
x+(b, lb. ) ""'exp, 2

bp 2bp

MCRG data in terms of an eAective coupling constant.
We fit the data by the lattice P function including a
next-order correction, and define our eAective coupling
I/g„by a free shift of I/gMs as follows:

with

dx„b t=bp+ +
2d lna x„

(3a)

x„—
gu

1
Xp.

gMS
(4)

Assuming the correction term b' is small, we actually use
the following equation instead of Eq. (3a):

dXp 1

2bo (I+bi/box )

The solution of Eq. (3b) is

b'

b px„2
=d lna . (3b)

f(x„)=f2(x„)exp
2bpx„

(5)

Using Eqs. (4) and (5), we have attempted two fits for
the data above p=6.00: (A) Restrict x„=I/gMs (i.e.,
xp=0) with b' as a free parameter; (B) allow a shift of
the eAective coupling constant; i.e., both xp and b' are
free parameters. The results are shown in Fig. 5. In case
(A), only a poor fit is obtained. The coefficient b' is also
relatively large as b'/b p

= —0.0850(0.0013) while
bi/bp=0. 0587. Thus, it is difficult to explain the present
data by an additional O(gMs) term only. On the other
hand, in case (B), we can fit the data quite well by values
of parameters as (curve 8)

xp =0.442(0.004), b'/bp = 0.0119(0.0008) . (6)

In this case, the coefficient of the O(g„) term is small but
the shift parameter xp is non-negligible. It is noted that
we have also tried fitting in the eAective coupling scheme
and have gotten similar results. Since the sign of b is
negative, we say that our lattice is coarser than predicted
by 2-loop scaling.

Based on this scheme, we can discuss the continuum
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confinement phase is stressed. Above the deconfining
transition point, the matching procedure inevitably
suffers large errors. Although most of the data measured
above the transition are consistent, those in the
confinement phase have higher quality and reliability.
Study on a larger lattice is apparently preferred. In order
to cover the region up to P =7.5, we need a 64 lattice.

The present calculations have been carried out on the
parallel computer AP1000 at the Fujitsu Parallel Com-
puting Research Facilities. We would like to acknowl-
edge Dr. M. Ishii and members of the facilities for warm
hospitality and valuable advice.

FIG. 6. Scaling of string tension in diAerent coupling con-
stant schemes.

limit of physical quantities in units of A—
s . In Fig. 6,

scaling of the string tension of Refs. [6,20,21] is exam-
nf =D

ined. As expected, good scaling is obtained for vcr/A —
s

for P=5.7-6.8, as shown by black circles in the figure,
and the value is

J~/A —', =2.2(0.1) . (7)

This value is also interpreted as the continuum limit value
in the present scheme. Our result (7) is larger than that
of the static quark potential in Ref. [6] (1.80~0.06) and
Ref. [22] (1.72~0.13). We note also that A—

s =200
MeV for Jo =440 MeV. It is slightly smaller than that
extracted from the 1p-1s splitting of charmonium in Ref.
[2] (234 MeV).

In this work, the scaling behavior of SU(3) lattice
theory in the interval P =5.85-7.60 is studied by MCRG
analysis. A significant deviation from naive 2-loop scal-
ing is seen. This is clearly observed in the data by mea-
surements kept in the confinement phase up to P=6.80.
Thus naive 2-loop scaling does not hold in this region. It
is shown that a large part of the deviation is accounted
for by the mean field and/or the effective coupling con-
stant schemes. We show further that the deviation can be
absorbed by a next-order correction to the 2-loop P func-
tion, together with a shifted mean field coupling constant.
The coeScient of the next-order term, b', is consistently
small. Based on the scaling behavior of this lattice P
function, the string tension remains constant in the region
P =5.70-6.80 where the lattice spacing changes by a fac-
tor of 6. The estimated AMS in the continuum limit is
0.46(0.03)Jo. Though there is still a 20% discrepancy
between different methods [2,6,22], this seems an en-
couraging confirmation of the approach to the continuum
limit. It is also noted that the suggested coupling con-
stant g„diverges at some value of the bare coupling con-
stant (P—4.5). An interesting possibility is that this
divergence is related with the transition point from the
strong to the weak coupling region studied by Bhanot and
Creutz in a space of couplings of Wilson action and that
of adjoint representation [23].

Finally the significance of MCRG measurements in the
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