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Cancellation of Mass Singularities in Thermal Reaction Rates
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Thermal amplitudes exhibit mass singularities when particle(s) with vanishing mass is (are) in-
volved. We show that such singularities do not appear in the perturbation expansions of the thermal
reaction rates, provided the theory in consideration does not bring about such mass singularities
in zero-temperature reaction rates. The latter is supposed to be the case for physically sensible
quantities in a wide class of theories, including QED and QCD (Kinoshita-Lee-Nauenberg theorem).
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Much interest has been taken in gauge theories at high
temperature (hot gauge theories), because of their rel-
evance to the early Universe and to the quark-gluon
plasma to be produced in heavy-ion collisions. One of
the most important findings in recent years in this field
is the resummation program developed by Pisarski and
Braaten [1,2]. The essential observation is to see that,
to one-loop order in the sense of “hard thermal loop”
[1,2], there appears two natural scales, i.e., a hard scale
~ T and a soft scale ~ g7 with g the gauge coupling
constant. To obtain a consistent perturbative expansion,
for thermal propagators and (generalized) vertices whose
external momenta are soft, p, < O(gT), one has to use
partially or hard-thermal-loop resummed ones.

In renormalizable quantum field theories with massless
particles, we encounter the problem of infrared (IR) and
collinear or mass singularities. At zero temperature, it
is believed that, in most of the physically relevant the-
ories such as QED and QCD, as far as physically sen-
sible quantities are concerned, IR singularities of Bloch-
Nordsiek type and mass singularities disappear when one
sums over the set of all degenerate initial and final states
[Kinoshita-Lee-Nauenberg (KLN) theorem [3-7]]. At fi-
nite temperature, several works have been devoted to this
issue [8,9], but the subject is still under study.

In thermal field theories, the resummed soft propaga-
tors mentioned above soften or screen the IR singularities
appearing in loop integrals. For example, in hot QCD,
this softening renders some otherwise divergent physical
quantities finite [10]. Some of the other physical quanti-
ties (like the damping rate of a moving quark or a gluon)
are still IR divergent, but are expected to be rendered
finite through resummations of still higher-order loops
[1,11]. In this Letter, we shall be concerned with mass
singularities, and show that thermal reaction rates are
free from them.

We start with an expression of thermal reaction rates
[12]. We consider a heat-bath system of temperature T,
composed of the fields ¢(®), with o labeling collectively
a field type and its internal degrees of freedom. For con-
venience, we enclose the system inside a large cube with
volume V = L3. Employing the periodic boundary condi-
tions, we label the single-particle basis by its momentum
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p =2mi/L, i; =0,+1,%2,...,%00 (j = z,y, 2). At the
final stage, we take the limit V — oo.

Physically interesting thermal reactions are of the fol-
lowing generic type,

{A} + heat bath — {B} + anything . (1)

Here {A} and {B} designate groups of particles, which
are not thermalized, such as virtual photons and leptons.
(Generalization to more general process, where among
{A} and/or {B} are ¢(®)’s, is straightforward [13].) The
reaction rate R of the thermal process (1) is expressed
[12] as a statistical average of the transition probability,
W = S§*S (with S the S-matrix element), of the zero-
temperature (T = 0) process,

{A} + {n{} — {B} + {n{*'}, 2)

where {ni(a) } denotes the group of ¢(*)’s, which consists
of the number ni(a) of ¢i(a) (¢(® in a mode i):

f P f W (process (2)) /2m6(0)

ny (@) ny(e)’

S (@) @y ®
S 0> Welln®} — ()
{u} {7}

p=N"1exp <—,BZZni(a)Ei(a)) . (4)

Here 276(0) = ty — t; (= 00) is the time interval during
which a “measurement” is made. Wy = S§Sgisthe T =0
transition probability of the process indicated, Ei(a) is
the energy of ¢i(°‘), and N is the normalization factor. In
(3) S stands for the summation with symmetry factors
being respected, and, for a bosonic (fermionic) ¢(®), ni(a)
runs over 0,1,2,...,00 (0 and 1).

The T = 0 S-matrix element is obtained through an
application of the reduction formula. As an illustration,
we take a heat bath of thermal neutral scalars ¢, and we
take {A} to be {®(p;); j = 1,...,m} and {B} to be
{®(qx); kK = 1,...,n} with & a nonthermalized heavy
neutral scalar. Assuming ® — ¢ coupling to be of the
form ®¢!, we have [12]
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k=1

where 6(--- ; - -+) denotes the Kronecker’s é§ symbol,
Kip- - nE——-—— dize PO+ ,
ne e = e [dre @ MY 4@

and likewise for K. ¢, --®;. Sp is given by a similar
expression to (5), where factors related to the ® fields are
deleted. In (5), among n; (n;’) of ¢i’s in the initial (final)
state, j; (ji') of ¢:’s participate directly in the reaction(s).
Remaining n; — j; of ¢;’s are merely spectators, which
reflects only on the statistical factor in R in (6) below.
Let us turn back to the general formula (3) and (4).
The thermal reaction rate R can be reduced to a “for-
ward” thermal amplitude evaluated in the framework of
the real-time thermal field theory based on the time path,
—00 — 400 — —00 — —oo — if, in a complex time
plane (thermal optical theorem). It is shown [12] that,
when the number density of each incident particle in {A}
[Eq. (1)] is normalized to 2E (E being its energy), (3)

goes to
w/U(whe) -+ o

in the limit V' — oo. Here qx (Ek), £k = 1,2,...,n,
is the momentum (energy) of the kth particle in {B}
[Eq. (1)]. A stands for the connected real-time thermal
amplitude, summed over spins and internal degrees of
freedom of particles involved, for the “forward process,”
{A1}+{Bg} — {A2}+{B1}, where {Al} ({Az}) signifies
that all the fields in {A} are the physical (thermal-ghost)
fields, and likewise for {B}. [The Dirac spinors are nor-
malized such that the spin sum of u(p)ua(p) and v(p)v(p)
give p + m and P — m, respectively.] Inclusion of the
contributions from disconnected A’s is straightforward.
In reducing (3) to (6), one expands the numerator, N,
and the denominator, D, of (3) in powers of coupling con-
stant g and then gathers the same-order terms. The fol-
lowing type of contribution coming from N, say ¢V Ny,
involves infinity; a heat-bath particle qbi(a) participates in
the reaction with {A} and {B}, and “another” ¢>i(°‘) in the
same mode i undergoes graphically disconnected reaction
with other ¢(#)’s. This type of infinity corresponds to an
infinite lifetime of (j)i(a) that is on the mass shell—thus,
as it were, mass (-shell) singularity. In such case, one
can always find the corresponding diverging term in D,
say g™ Dy, which originates from the fact that the ther-
mal reaction probability among ¢(®)’s are proportional
to the time interval t;y — ¢; (= oo) of “measurement.”
When this term, g™ D, is combined with the relevant
lower-order contribution in N, gV =M Nn_1s, and added
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n’'=1

| to gN Ny above, there emerges [12] the “correct” form

of thermal propagator with thermal self-energy correc-
tion, which takes a seat in the thermal amplitude A in
(6). That A is free [14] from ill-defined singularities like
{6(p* — m?)}™ (n > 2) guarantees the absence of mass
(-shell) singularities of this type. Thus, in the sequel, we
will not be concerned about them. It is to be noted that
these types of singularities are absent not only in reaction
rates but also in thermal amplitudes. On the contrary,
the genuine mass singularities discussed below are absent
only in reaction rates.

Armed with the above machinery, it is rather straight-
forward to show that the reaction rate R is free from
mass singularities. Let us rewrite (3) as

> (N“le PE)T(E)/216(0)

_E
b Z(N‘l SE)To(E) @

Z §(E; ZZW)E(‘”) Z wW. (8)

{n(*} « {n{™"}
[o(E) in (7) is given by an expression similar to (8).
' and Ty are the transition probabilities of the reac-
tions in consideration, with the initial energy of ¢(®)’s
being E. An important observation here is that I'(E)
and I'g(E) are to be evaluated in vacuum field theory
[cf. (B)]. Since all degenerate sets in the initial and fi-
nal states are summed up in (8), we can apply the KLN
theorem [3,4]; I'(E) and ['o(E) are free from mass singu-
larities in each order of perturbation expansion in a wide
class of theories.

Now we will see in some detail how the argument by
KLN [3-7] goes, referring to I'(E) in (8). Because all the
degenerate sets are summed up in (8) allows us to intro-
duce a set of double-cut diagrams [3,7], through which
I'(E) is evaluated. A double-cut diagram is a no-leg di-
agram and has two kinds of cut lines, the initial-state
cut lines and the final-state cut lines, which divide the
diagram into two parts; the one corresponding to S and
the other to S*. We divide the set of double-cut dia-
grams into subsets: All diagrams belonging to a subset
have the same topology if two kinds of cut lines are re-
moved. They differ in that the way of cuttings are differ-
ent, corresponding to different processes. (An example
is given below.) IR and mass singularities in I'(E) can
come about when subsets of (internal) lines in a double-
cut diagram go on-shell. We name any point in momen-
tum space where this is the case a “singular point.” At
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this stage, we restrict ourselves to examining mass sin-
gularities, and then ignore throughout the soft modes,
Ei(a) < A ~ O(gT). Mass singularity may appear [6,7]
only if momentum contour integral (in the V' — oo limit
form) is trapped at a singular point. Each double-cut
diagram belonging to a subset develops, in general, mass
singularities in the vicinities of some singular points. The
KLN theorem states that if we add all contributions com-
ing from all the diagrams in the subset, the cancellation
of mass singularities takes place in the vicinity of the sin-
gular point from which they come about. It should be
emphasized that the cancellation occurs in the vicinity of
the singular point, and is not affected by cutting off the
IR region. The situation is exactly the same for I'o(E).

The KLN theorem is believed to hold for physically
sensible quantities in a wide class of theories that include
QED and QCD. Thus we come to the conclusion: In the
above class of theories, the thermal reaction rate R in (7)
18 automatically free from mass singularities.

When some or all of the particles in {A} and/or {B}
in (1) are massless (thermalized) particles, care should
be taken. For example, if the particle with q; in {B} is
massless ¢—then necessarily thermalized—the inclusive
reaction rate (7) or (6) has mass singularity. However,
such a massless particle cannot be “measured” exper-
imentally, since the single ¢(q;) state and states con-
taining a massless ¢ plus a number of parallel-moving
massless particles degenerate in energy. According to the
KLN theorem, the inclusive reaction rate (7) is free from
mass singularity provided that, in any given order of per-
turbation series, the contributions from all such degener-
ate states [including the single p(q;) state)] are summed
up. Employing the double-cut diagrams, one can eas-
ily identify the relevant set of degenerate states. As an
example, consider the Drell-Yan (u~ pu*-pair production)
process in massless QCD at zero temperature. Exam-
ples of the relevant double-cut diagrams are depicted in
Fig. 1, where, solid (dotted) cut lines represent initial
(final) state cuts, and directed, dashed, and wavy lines
are massless-quarks, gluons, and virtual photons (v*), re-
spectively. Figure 1(a) represents ¢(p) + @ — g(q) + 7%,
while Fig. 1(b) represents q(p —q) +g(q) +@ — g(p) +7*.
Figure 1(b) includes a spectator gluon in S* or in S. In
the Coulomb gauge, each one of Fig. 1 develops mass
singularity at the singular point, p || q {|p|, |a] > A), but

(b)

(a)
FIG. 1. Double-cut diagrams for the Drell-Yan process.

in the sum of them, the cancellation of these singularities
occurs. An important observation here is that the cancel-
lation takes place at every fixed value of |p| and |q|. Now,
suppose, for example, that we insert some projection op-
erator P into the quark-line segment with momentum p
in each diagram in Fig. 1. Here P picks up, say, the red-
quark state. Since all the algebras concerning internal
degrees of freedom are common for Figs. 1(a) and 1(b),
the above-mentioned cancellation still takes place. Now
the initial state of Fig. 1(a) is ¢"*%(p) +4, while the initial
state of Fig. 1(b) is {g(p — q) + g(q)}**? + @. Thus, we
have identified the relevant set of degenerate states from
the double-cut diagrams, Fig. 1.

Note that the reasoning above only requires that the
statistical weight p in (3) depends on the qui(a)’s energy
EX | only through E = 35, n{®E{*). Then, our
conclusion is valid for, e.g., reaction rates defined on the
basis of microcanonical or grand-canonical ensemble.

The renormalization does not ruin the proof of the
absence of mass singularities sketched above, provided
that suitable renormalization schemes, e.g., an off-shell
scheme, are employed [3-7].

At first sight, it seems that the above reasoning equally
applies to the proof of cancellation of IR singularities
of the Bloch-Nordsiek type. This is, however, not the
case: In zero-temperature field theory, one deals with
the transition-probability formula like (8) with W’s as
representing connected diagrams. (Note that S or S* is
not necessarily connected, cf. the above example.) Then,
at some fixed order of perturbation series, as a matter of
course, the number of diagrams or terms contributing
to this formula is finite. The KLN theorem is that the
cancellations of the Bloch-Nordsiek type IR and mass
singularities occur among these terms. In the present
finite-temperature case, however, in (8) spectator parti-
cles are involved, and, for such configurations, the corre-
sponding W's have “spectator part” that is graphically
disconnected with the “reaction part.” In contrast to the
mass-singularity case, since an IR mode, i = 0, has van-
ishing energy E(()a) = 0, W’s with unlimited number of

spectator qﬁ(()a)’s may contribute to (8), which reflects on
the fact that the § symbol in (8) does not constrain the

number of terms in (8) to finite. Noting that W contains

)

some positive powers of nf,a , we see that the summation

over n{® in (8) diverges, and likewise for T'g. In the limit
V — o0, this reflects on the appearance of diverging inte-
grals like, e.g., f;° dp/{(e”'P! —1)|p|?} in Ain (6). Thus,
our procedure is incapable of analyzing the IR problem.

In passing, one should be reminded of the fact that
the consistent expansion in powers of g is obtained only
after the hard-thermal-loop resummations are made for
the soft lines [1,2] (cf. first three paragraphs). Then, the
analysis of the IR singularities should be performed by
taking the hard-thermal-loop resummations into account.

We make a comment on gauge theories. Note that the
thermal propagator [12,14] from a physical vertex to a
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thermal-ghost one Dj;(k), appearing in A in (6) has its
origin [12] in the emission of a particle with momentum
k in the reaction (1). Since the final states in (1) are, of
course, physical states, for a gauge boson, we have

K*KRY

2 1
— )27r6(k ) [1+ S J,

where 6*¥ = diag(0,1,1,1) and x* = (0,k). For a
Faddeev-Popov ghost that comes on the stage in non-
Abelian gauge theories, depending on the gauge choice,
we have DI = 0. The situation is similar for other ther-
mal propagators D11, Das, and Dy5. Then, for gauge the-
ories, the above proof primarily holds provided one cal-
culates (6) in thermal field theory, with the gauge choice
of Landshoff-Revhan’s [15], in which the thermal parts
of thermal propagators only contain physical degrees of
freedom. At this point, the fact that the gauge invariant
thermal amplitude like A in (6) is in fact gauge invariant
at the level of thermal field theory [14,15] guarantees the
validity of the above proof in any gauges.

One more comment we like to add is that, in ac-
tual computation of a thermal reaction rate, one should
introduce some regularization. If one employs dimen-
sional regularization (see, e.g., [5]), the gauge invariance
is manifest. If some other regularization is chosen, one
should be careful as to extracting the gauge invariant
reaction rate. This situation is exactly the same as in
zero-temperature field theory.

Finally, I would like to add that I have analyzed explic-
itly the thermal Drell-Yan process, quark-gluon plasma—
u~ + pt +anything, with u pair being at rest. The cal-
culation has been carried out in the Coulomb gauge to
the lowest nontrivial order. Within the framework of
thermal field theory, many people demonstrated that the
reaction rate of this process is free from IR and mass sin-
gularities (see, e.g., [8]). On the basis of formulas (3) and
(4), I have reconfirmed the absence of mass singularity
in the reaction rate.
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