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The number of levels with energy less than E of an integrable quantum system with two degrees of
freedom is equal to XE+sE', where A, is a constant and s a Auctuating quantity with a non-Gaussian
distribution. The probability distribution of s decreases roughly like exp( —s ) when s is large. The
number of levels between E and E+zJE is equal to kz JE+rE 'I where r is another lluctuating quanti-
ty. The distribution of r tends to a Gaussian distribution as z 0 and oscillates around some limiting
non-Gaussian distribution as z

PACS numbers: 03.65.Sq, 02.50.—r

The nature of the distribution of quantum energy levels
for systems with integrable or chaotic classical Hamil-
tonians is an active field of study using both numerical
and analytic methods [1-7]. These studies strongly indi-
cate the universality of the local statistics of eigenvalues
of generic quantum Hamiltonians: For integrable sys-
tems the local statistics is Poissonian, while for chaotic
systems it is the Wigner statistics of the ensemble of
Gaussian matrices. In this Letter we summarize new
rigorous results about the statistics of levels of simple in-
tegrable Hamiltonians [8-12]. These are related to the
distribution of integer lattice points inside a "random" re-
gion of the plane, a problem of independent interest in
number theory [13,14].

To see the connection with the lattice problem, consid-
er a free particle on a torus. The eigenvalues are, in suit-
able units, E„=ni +n2, with n=(ni, n2) e Z . - More
generally we may consider integrable systems with eigen-
values

E„=l(n i
—ai, nz —a2),

where 1(xi,x2) (maybe after some renormalization) is a
smooth homogeneous function of second degree and
a=(ai, a2) is a point in the unit square [1]. The number
of levels

N(E) ={n~E„~E[

ties of energy levels in a fixed interval 5, which does not
grow with energy, has been investigated numerically, and
there is strong evidence that the statistics are Poissonian
[1,4, 15]. When S grows with E in such a way that
S~ CE', the levels are no longer "truly random" on
this scale, and we can expect deviations from Poisson
statistics [1,4).

We first describe the results informally in the language
of energy levels and then give a brief indication of the
proof in terms of lattice problems. Our statements are to
be understood as referring to the limit T ~ when E is
uniformly (or otherwise smoothly) distributed in the in-
terval ciT & E ~c2T, c2& ci &0. Let be the area of
the interior of the oval curve y defined by 1(xi,x2) =1.
We assume that y is (at least 7 times) diff'erentiable and
has strictly positive radius of curvature everywhere.

The average number of levels per unit energy, lV (E)/E,
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is clearly the same as the number of lattice points inside
the oval curve defined by 1(xi —ai, x2 —a2) =E. We are
interested in the behavior of N(E) and N(E, S) =N(E
+S)—N(E), the number of levels between E and E+S,
for generic Hamiltonians in this class, e.g. , for "typical"
a in (1) and also for individual Hamiltonians with given
a. Thus if E is considered a random variable uniformly
or otherwise smoothly distributed on the interval
[ci T,c2T], c2 ) c i )0, we can ask for the variance and
distribution of N(E) and N(E, S) when the energy or T
is very large compared to the average spacing between
levels, which is of order 1; cf. Fig. 1 for the behavior of
N (E) —trE as a function of R =JE when I(x i,x 2)
=xi +x2 and a =(0.34367,0.43037). The local statis-
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FIG. 1. The graph of the function N (R ) —nR = number
of {n E Z

~ ~n
—a~ ~ R] —ttR for a=(0.34367,0.43037).
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is given asymptotically by X+0(E '/ ). The difference
N'(E) X—E has mean square fluctuation behaving like
VE ' with a constant V as E ~. This behavior can be
understood from the fact that N(E) counts the number of
lattice points inside the curve JEy, whose perimeter,
around which the fluctuations occur, grows like ME.
Furthermore the probability that the random variable
F(E) =[N(E) —XE]//E ' takes on values in the interval
between s and s+ds has a limit p(s)ds as E or T
This density p(s) is a real analytic function of s with
mean zero and variance V. The decay of p(s) for large s
is bounded above and below (roughly) by exp[ —cs ]
where c and V depend on the shape of y as well as on the
shift a in (1). This shows in particular that p(s) cannot
be Gaussian; cf. Fig. 2 where p(s) is presented for

I(x, ,xz) =(x, —a1)'/a1'+(x2 —az)'/az (2)
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FIG. 2. The density p(s) of the limit distribution of
F(E) = [%(E)—AE]/E '~4 for the e,nergy function I (x ~,x2)
given in (2) with (a) ai/a2=m/10, a~ =a2=0 and (b) ai/a2
=x/10, a~ =0.343 67, a2 =0.430 37.

with a ~t/az=x/10, a1=az=0 in graph (a) and a~/a2
=n/10, a~ =0.343 67, az =0.430 37 in graph (b). As
these examples illustrate, the distribution p(s) is usually
skew and sometimes bimodal (the parameters in the
second example were specially chosen to demonstrate a
case of bimodal distribution).

Let us consider now the fluctuations in N(E, S) These.
depend on the rate of growth of S when E ee. When
S/E 0 but S/E'/ ~, then N(E+S) and N(E)
are asymptotically independent, so their variances add
and ([N(E,S) —XS] )—2VE ' . The distribution of
[N(E,S) XS]/E ' —then converges to the distribution of
a diAerence of two independent identically distributed

V(z) -),z . (3)

This implies that when z 0, the variance of N(E, S)
becomes equal to its average value XS, which is consistent
with (but does not imply) a Poisson distribution. The re-
lation (3) is violated in degenerate cases. For instance,
for the circle with center at the origin [or at any rational
point a =(a~, az)] the behavior of V(z) is given by

V(z)-Cz~lnz~, z 0. (4)

This anomalous behavior of V(z) is related to an arith-
metic degeneracy of the circle problem: For some in-
tegers k there are many representations of k as a sum of
two squares, and on the average, their number grows as
ink, which shows up in the log-correction to linear asymp-
totics of V(z) as z ee. For a circle with center at a
very irrational (Diophantine) point (a1,az), the behavior
is normal, satisfying (3). For an ellipse centered on the
origin with a transcendental ratio of the axes there is a
fourfold degeneracy and V(z) -4kz.

We prove also the existence of a limit distribution of

F(E;S)= [N(E,S) —(N (E,S))]/dV arN (E,S)
in the regime S/E' z. The limit distribution is not
Gaussian and in a generic case its density decays at
infinity roughly as exp[ —c(z)x ]. However, when z 0
this limit distribution converges to a standard Gaussian
distribution, which can be taken as signaling an approach
to a random regime.

When S stays fixed we expect to get a Poisson distribu-
tion with mean XS as E ~. There is strong numerical
and analytic evidence that this, and the corresponding ex-
ponential distribution of distances between neighboring
levels, is indeed the case, for typical values of a [15].
The only rigorous result in that direction, ho~ever, is due
to Sinai and Major [16] for the number of lattice points
in a narrow strip surrounding a typica1 "very random
curve, " so random in fact that it is not even twice
diAerentiable, so that its relevance to real systems is ques-
tionable. For the type of smooth oval curves y considered
here all that can be shown at present is that the first and
second moments of N(E, S) are, after averaging over a,
indeed given by XS, as they would be for a Poisson distri-
bution [12].

random variables, with distribution p(s), the limit distri-
bution of F(E).

When S/E'/ z & 0, the variance has a scaling be-
havior,

([N(E S) —) S] ') -E ' 'V(E ' S)
The scaling function V(z) is an almost periodic function
of z, so it is oscillating and has no limit at infinity; its
average (I/L)jo V(z)dz approaches, as L ~, its value
in the previous case, when S/E'/ ee, i.e. , 2V. In the
limit z 0 we show that in typical cases, corresponding
to no systematic degeneracy of the E„,
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To give a brief sketch of the proof we shall for simplici-
ty consider the case of a circle centered at a. We then
have F. =R and N (R) is the number of lattice points in

the shifted circle, ln —al ~ R. The classical circle prob-
lem which goes back to Gauss is to prove a uniform
bound for the fluctuations in No(R). The best result in

this direction at present [17], END(R) —trR
l
~ C,

XR" +', is quite far from the expected bound R'

or even R ' (lnR) for some 6. (Numerical studies sug-
gest 8 & 1.)

Our results show that the situation is much better when
we abandon the attempt to prove uniform bounds and
consider the statistical behavior of the Auctuations. Us-
ing the Poisson summation formula gnf(n) =conf(2trn),
where f is the two-dimensional Fourier transform of f

1

and the summation goes over n E Z, yields

F (R) =[N (R) —ttR ]//JR = g lnl 'e(n a)J~(2ttlnER)MR
n&0

'g lnl e(n a)cos[2ttlnER —3x/4]+O(R '),
n~0

(5)

where J~(t) is the Bessel function and e(t) =e
The basic idea, due originally to Heath-Brown [14], is to rewrite (5) as a sum of terms representing a flow on an

infinite-dimensional torus with incommensurate frequencies, R playing the role of time. The problem of finding a limit-
ing distribution is then a problem in ergodic theory [18]. To do this we first group terms in (5) with commensurate fre-
quencies, i.e. , all those n E Z for which lnl =k~m, k =1,2, . . . , where m & 0 is a fixed square-free natural number, i.e. ,
m &k I with k & 1. This gives

F,(R) = g fm(JmR;a)+0(R '),
square-free m

(6)

f (t;a) =tr 'm t g k t cos(2ttkt —3'/4)
k=1 n:InI =kMm

e n. a (7)

is periodic in t with period 1.
Since the Km's with square-free m are linearly in-

dependent over the field of rational numbers we are led to
the study of limit distributions of almost periodic func-
tions of the form

of period one with

t 1 t ]

, a (~)d~=0, X „, la (~)l'd«
&0 m=1

and

(9)

F(t) = g a„(y.t)
n=l

(8)
c m '& sup la (8)E'

with rationally independent y„. If the sum (8) were finite
then ergodic theory would indeed imply the existence of a
limiting distribution of F(t) corresponding to the distri-
bution of the finite series g„=~a„(0„),where the O„are
independent random variables uniformly distributed on

[0,1] (see, e.g. , [19]). This means, roughly speaking, that
the yntmodl, n =1, . . . , N, behave like independent ran-
dom variables uniformly distributed on [0,1], as t varies
over a suSciently large range. Our problem is that the
series in (6) is infinite, and in fact only conditionally con-
vergent, since f (t;a) —m t . To prove the existence of
a limit distribution of such a series we generalize ideas of
Heath-Brown to a large class of almost periodic functions
(the Besicovitch space 8'). This permits us to find the
distribution of lattice points in regions bounded by
smooth convex curves.

The nature of the limiting distribution p(s) for large
lsl is determined by the large m behavior of the f in

(7). The proof is based on the following result [8,9,11].
Let 0, m =1,2, . . . , be independent uniformly distribut-
ed random variables in [0,1] and consider the distribution
of g a (8 ) where the a (0) are continuous functions

1

la (e)l'do& c,m

with cl,c2&0 and 0& v& 1. Then

C'exp[ —c's' " "'] &Pr. ga (e ) &s E

(10)

& C"exp[ —c"s '"' ']
for some C', C",c',c"&0. For the f in (7), v=3/4, and

so we obtain the bound exp( —Xs ) on p(s;a), for every
a.

While the limiting distribution p(s;a) of F(R;a) is in-

dependent of the details of the distribution of R in the in-

terval [c ~ T,cqT], it has a very nonsmooth dependence on

a. In particular, the variance V is nondiA'erentiable at
every rational point P=(p~/q~, pq/q2), behaving like V
—Vp+ CE a —Pl ln

1
a —Pl as a P (see [10]). The vari-

ance V can be obtained either from the second moment
of the limiting distribution p(s) or directly from the limit

T
(F (R)) = lim (1/T) Fn(R)dR.

OO aJ 0
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The validity of this interchange of limits is an open prob-
lem for higher moments of F,(R). In fact while the de-

cay of p(s;a) guarantees the existence of all moments
Js"p(s;a)ds, we do not even know whether (~F,(R)~")
exists for l~ ) 9 (cf. [14]).

The analysis of the distribution of N(E, S) proceeds
in a similar way. Considering the variance v (6) of
[N (R+cR ) —N (R)]/JR we find that v (6) 2V for
0 (6 (1, and v, (8) V (z) for c =z/2tr and 6=0.

Our results depend strongly on the assumption that the
curvature of y does not vanish anywhere. The situation
can be different in the presence of in[]ection points [20].
In the extreme case when y is a rectangle of unit area
with a very irrational orientation with respect to the x
axis, e.g. , tanB=&2, Beck [21] has shown that the I]uc-
tuations in N (R) —R have a variance which grows like
lnR. After normalization by (lnR)'/ the distribution of
fluctuations converges to a Gaussian distribution.

If we keep y fixed and rescale the lattice Z by R
we may think of R [N (R) —kR ] as the difference be-
tween the Riemann sum and the integral for the function
iit(r) = I inside y. Our results generalize to the case
where ilt(r) is a general smooth function of r which does
not vanish on y. The main contribution to the deviation
of the Riemann sum from the integral then comes from
the boundary of y and will be of order R when the
lattice spacing R ' tends to zero.

We want to thank our collaborators Zheming Cheng
and Peter Major for all theor help. The work was sup-
ported in part by the Ambrose Monell Foundation and
NSF Grant No. DMR 92-13424.
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