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We give a wide class of Lie-Poisson systems for which explicit, Lie-Poisson integrators, preserv-
ing all Casimirs, can be constructed. The integrators are extremely simple and have widespread
applicability. Examples are the free rigid body, a moment truncation, and a new, fast algorithm for
the sine-bracket truncation of the 2D Euler equations.
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Hamiltonian systems are fundamental, and symplectic
integrators (SI's) have been increasingly used to do use-
ful extremely long-time numerical integrations of them.
Wisdom and Holman [1] have used fast SI's to integrate
the solar system far more efficiently than with standard
methods; there are numerous examples illustrating the
superior preservation of phase-space structures and qual-
itative dynamics by SI's [2—4]. A philosophy has emerged
of attempting to preserve as much geometric structure as
possible in numerical treatments.

However, many Hamiltonian systems are not in canon-
ical form but are most naturally written as Poisson sys-
tems, which generally arise as reductions from canonical
formulations in more variables. The most common type,
and the only one we shall deal with here, are Iie-Poisson
systems [5]. These are distinguished by having a Poisson
bracket which is linear in the phase-space coordinates.
Each such bracket is associated with a Lie algebra which
reHects the symmetry of the system at hand. For exam-
ple, for the motion of a free rigid body, the Lie algebra
is so(3), the algebra of infinitesimal rotations in Rs. An-
other area in which Lie-Poisson systems play a major role
is the study of fIuid-particle-field systems such as ideal
hydrodynamics, magnetohydrodynamics, or the Vlasov-
Poisson equations of plasma physics [5,6]. In these cases
the Lie algebra in question is associated with the particle-
relabeling symmetry of the Eulerian (spatial) form of the
equations.

Integrating Lie-Poisson partial difFerential equations
(PDE's) first requires a truncation to finite dimensions
of the noncanonical Poisson bracket. This is equivalent
to finding a finite-dimensional approximation of the un-

derlying Lie algebra, and is a major research challenge at
this time. Only two successful approaches have emerged
at all, and some Poisson brackets appear to have no trun-
cation. The two approaches are the sine bracket [7], as-
sociated with su(N) and applying to various 2D ideal in-'

compressible fIuids, and, for PDE's describing the evolu-

tion of localized distributions, the moment truncation of
Scovel and Weinstein [8]. To integrate in time, there are
general methods which preserve both the discrete Pois-
son bracket and its conserved quantities called Casimirs

[9,10]. They are not only implicit but require evaluating
functions like "e "~" via Taylor series; hence they can be
very slow.

If Lie-Poisson integrators are to be as practical as stan-
dard symplectic integrators, they should be simple and
fast. To this end we describe the widest general class
of such systems for which explicit methods are available.
Examples of such methods were first found by Ruth [ll
for canonical systems, and by Channell and Scovel [9
for Lie-Poisson systems. Our class includes the sine-
bracket truncation of the 2D Euler equations, the sine-
Euler equations. It seems appropriate that the miracle
that the sine bracket exists at all should be followed up

by a series of coincidences: Not only does an explicit
method exist, because of the special form of the Euler
Hamiltonian, but the beautiful structure of the sine-Euler
bracket allows the new method to be O(N/ ln N) times
faster than the standard implicit method.

Poisson systems and integrators. —A Lie-Poisson sys-
tem consists of (i) a phase space R" with coordinates x;
(ii) a noncanonical Poisson bracket (F, G) = &a+ J,s &

where J,~
= c," 2;I, with c, the structure constants of a
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Lie algebra; (iii) a Harniltonian H: IR" —+ IR; and (iv)
dynamics x = (x, H} = JVH. We write the solution of
these differential equations as x(t) = exp(t JVH)[x(0)].
Poisson systems can have certain conserved quantities C,
called Casimirs, that depend only on the Poisson bracket
and not on H: they satisfy (C, F}= 0 VF

The dynamics preserve the Poisson bracket; a Pois-
son integrator is one whose time-step map x —+ x'(x)
also preserves the Poisson bracket. Symplectic splitting
methods apply when the Hamiltonian is a sum of terms
each of which can be explicitly integrated —for example,
in a canonical Hamiltonian system, H = T(p) + &(q),
which leads to standard explicit symplectic integrators
[4,11]. For Lie-Poisson systems, our methods depend on
the following observation.

Observation. —Iet

Z = (o. c' (1, . . . , n}:J,~ = 0 V i, j e o }.
Iet the Hamiltonian depend only on the variables x, for
i c cr, vjhich ive denote by H = H(o). Then the dynamics
of the Iie Poisson -system with Hamiltonian H(o), o 6
Z, are linear upwith constant coefficients

In other words, a set of indices o. is in Z if the cor-
responding coordinates Poisson commute with one an-
other: (x, , x, }= 0 V i, j 6 o. In fact, Z is the set of all
Abelian subalgebras of the Lie algebra associated with
J. The key point is that the dynamical equations now
have x, = [J(x)V'H(o.)], = 0 for i E o.. This in turn
implies that the difFerential equations for the remaining
xq, k g o, although coupled linearly amongst themselves,
depend only parametricctty on x, for i ~ o.

Usually the resulting linear systems, although depend-
ing in a complicated way on the parameters x, , i F o.

, can
be solved explicitly. This will be illustrated in the exam-
ples below. Then an explicit, first-order, Lie-Poisson inte-
grator for a Hamiltonian with p terms H = P~& i H~(o.t, )
1S

y(t) = exp(AtX'i) exp(At%„),

where Lt is the time step and Xk = JV'Hg, that
is, just integrate each piece of the Hamiltonian in
turn. A second order symmetric method ("leapfrog" )
is p(~At)p (—26t). Methods of any order can be con-
structed by composing several such steps [12—15].

The above observation may appear somewhat special-
ized; however, we shall show by means of examples that
it has widespread applicability, not only to elementary

systems such as the free rigid body, but also to both of
the known finite-dimensional truncations mentioned in
the introduction.

First, note that E certainly includes the singleton sub-
sets, because antisymmetry of J implies J,, = 0. So
we can immediately integrate Hamiltonians of the form
H = p"„,HA,.(xg):

The free rigid body. —Recall the standard description of
the free rigid body, as in [5]. Here rn E Rs is the angular
momentum in body coordinates, H =

2 (mi/Ii+m2/I2+
ms/Is), and the Lie algebra is so(3) so

O —m, m, )
m3 0 —m1

( —m, m, O )
One may check that m = JV'H are the usual equations of
motion of the free rigid body, mi = (1/Is —1/Iq)m2ms,
etc. This J has a Casimir C = ~m~, the total angu-
lar momentum, so H = H —C/2Ii generates the same
dynamics as H; this leaves only two terms in H. With
cup = mp(l/Ig —1/Ii) and Rg(8) being rotation by an
angle 0 around the axis mA, , the map corresponding to
(1) is

m' = Ag(At~s)Rg(At~g)m

—a "standard map" of the rigid body. The Casimir ~m~

is clearly conserved. This is a new, explicit Lie-Poisson
map approximating the flow of the free rigid body, and
we found it to be 60 times faster (for the same accuracy)
than the implicit Lie-Poisson method of [9]. Non-Poisson
methods, such as the midpoint rule, have been considered
in [16], but showed poor performance.

A moment algebra. The followin—g example of a Pois-
son bracket arises in problems involving the advection of
a scalar field f(q, p) by Hamiltonian vector fields in the
(q, p) plane, such as the 2D Euler equations or the 1D
Vlasov-Poisson equations of plasma physics [9]. For the
derivation of J, see [9]; however, we introduce it here as
an illustration of our integration technique.

The finite-dimensional representation considered here
retains only the second and fourth order moments of
the field f(q, p). Coordinates are (q pt ) = J q p~
x f (q, p) dq dp which we collect in a vector

*= ((q') (qp) (p'), (q') (q'p), (q'p') (qp') (p'))

We have

( o
—2x1
—4x2

0
2x4

—4x5
—6x6

( -8x,

2x1 4x2
0 2x3

—2x3 0
4x4 8x5
2x5 6x6

0 4x7
2x7 2x8

—4x8 0
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—4x4 —2x5
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0 0
0 0
0 0
0 0
0 0
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0

—4x7
0
0
0
0
0
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As pointed out in [9], if H were separable in p and q as
in the Vlasov-Poisson equations, i.e. , H = T(x3 xs) +
&(xi, x4), then an explicit Poisson integrator is possible,
just as in the canonical case. But from the above ob-
servation, noting the positions of the zeros in J shows
that

m2

L J

ra
LP

LJ

k

bH
tii = J(cu) = J(cu)P = —~,Q„+cry/

bu
For a geometric derivation of the above formulation, see
[6]. This J has an infinite number of Casimirs, which we

may take as C„=Iw" dx dy, refiecting the fact that the
vorticity is simply advected by the Quid How. In Fourier
space Eqs. (2),(3) become

Jmn = m & n&m+n )

1 ) i 4)nba

2 - [n]2n+0
~DlXD

&m = ) &m+n& —n )n
n+0

where m x n = min2 —m2ni and for real a, cu

There is a finite-dimensional truncation of (2) [7], the
sine bracket

(3)

1 ~J „=—sin(sm x n)w mod~, (4)

where s = 27r/N and all indices are henceforth reduced
modulo N to the periodic lattice —M & mq, m2 & M
where N = 2M + 1. We shall take N prime for con-
venience; extension to nonprime N is straightforward.
Figure 1 illustrates the lattice of modes retained in this

Hl(xi x4) + H2(x2 xs) + H3(x3 xs)
+H4(x4 ) x51 X61 x7) xs)

also admits an explicit Poisson integrator.
In the canonical case one often has a nonlinear term

in H, not a function of q alone, which can nevertheless
be integrated explicitly in terms of elementary functions.
One such is H(qi, q2 + pz), which arises in the non-
linear Schrodinger equation and in the Zakharov equa-
tions [2] and which gives rise to the well-known split-
ting method for the nonlinear Schrodinger equation. This
phenomenon is less common in Lie-Poisson systems be-
cause of the more complicated evolution of those 2:~

not appearing in H. But it can happen: for exam-
ple, with a little work one can solve the linear, time-
dependent ordinary differential equations (ODE's) gen-
erated by H = H(xixs) with the above J.

The sine-Euler equations. —Here we consider the mo-
tion of an inviscid incompressible fiuid governed by the
2D Euler equations. The field variable is the vorticity
w(x, y), which is 27r periodic in x and y. We have

J =
Cd@ B~ —Ld ~ Oii ) (2)

1
H = —— Q~dxdy,

2
where

3{' 5
-3 -2 -1 0 1 2 3

my

I IG. 1. Mode splitting in the sine-Euler equations. Here
N = 7 and M = 3. Q shows modes in one term Hi, in the
Hamiltonian [k = (1, 1)]. ~ shows modes which are coupled
together in the linear system u = JV'Hi, [here j = (2, 0)];
shows modes whose values are the complex conjugate of the
~ modes.

truncation. This J has N —1 Casimirs which approxi-
mate |

„
for 2 & n & N. Equations (4) specify the struc-

ture constants of su(N) in an appropriate basis [7,17],
although we shall not use this rich structure here.

The most natural truncated H is
M

) . &n&-n
2 [n]2

n1,n2= —M
n+0

giving the sine-Euler equations, first proposed by Zeitlin

[»]:
M

1 sin(sin x n)
&m = ) 2 ~m+n& —n (5)n

n1,n2= —M
n+0

where as in (4) all indices are taken modulo N. As
a numerical approximation of (3), these equations are
only O(s ) accurate. Even if (5) is not very appeal-
ing on standard numerical grounds, it is hoped that
the model's Hamiltonian structure and conserved quan-
tities will bring compensating advantages, at least qual-
itatively. A discussion and numerical simulation of this
model can be found in [18], and a derivation of a similar
system in [19].

The approach outlined above now gives an explicit,
O(N3 ln N), Poisson integrator of (5), preserving all N 1—
Casimirs to within round-oK error —which is faster than
the O(N4) needed just to evaluate the right hand side of
(5). The first piece of luck is that the sets cr, describing
the commuting coordinates, are very large. For any k =
(ki, k2), we have

vari, ={nk:0&n&N) cZ.
To split the Hamiltonian we need a set of modes K such
that multiples of K cover the entire lattice. When N is
prime,

K = {(0,1)) U {(1,m): 0 & m & N j
suKces. The second piece of luck is that the truncated
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FIG. 2. Relative energy error to t = 5000, At = 0.05,
K = 7.

Hamiltonian only couples terms which are in the same
set og. We have

H = ) Hk(ok),
kGK

N —1
&nk+ nk—

2 - /nk/2

The Anal miracle is that the resulting linear ODE's
decouple into sets of equations which can be solved by
the fast Fourier transform. We need to solve u = JV'Hk.
Of course u = 0 for rn E ok. From (5), the other
modes decouple into 2M sets of N equations, of which
we only need to solve M sets; the others are their complex
conjugates (see Fig. I). The variables in each set are a
translation of op, say by j: let z = uj+ p, then

zm

M

a& zm —»

where

sin(snj x k)
s/nk/2

These ODE's are diagonalized by the discrete Fourier
transform (DFT): let z = Fz where F is the DFT F~I, =
~ exp( —2vri jk/N), then

z = Az where A = diag(Fa),

so the equations can now be integrated explicitly.
Summary of algorithm: (i) for k c K do, (ii) for j =

1st, . . . , Mth translation of k do [may be done in parallel],
(iii) with z = ~„+ k, set z' = F 'e ' Fz, (iv) copy
(z')' into w (&+ ki, (v) end do, (vi) end do.

The whole procedure requires 3M(%+1) =
2 (N —1)

DFT's of length N. As there are FFT's available for
sequences of prime length 1V [20], the whole algorithm
is O(Ns ln&). Figure 2 shows the relative energy error
[H(t) —H(0)]/H(0) for 10s time steps with At = 0.05,
N = 7, ~w[ = 1, and H(0) = 0.75. As is expected from an

integrator which is a symplectic map on the level sets of
the Casimirs, the energy error does not grow with time.
The errors in the Casimirs, e.g. , C2 = Q u„w „,are due
only to roundoff error, and grow by about 5 x 10 s per
time step.

This explicit method exists because the only coupled
terms in the Hamiltonian belong to the sets o.k, it is fast
because of the special form of the sine bracket in this ba-
sis. Preliminary simulations indicate that the evolution
can be followed for arbitrarily long times. It will be in-
teresting to see what the implications of this model are
for the ergodicity and statistical steady state of the 2D
Euler equations, which will be the subject of future work
[21).
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