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We consider a channel of an incompressible fractional-quantum-Hall-effect (FQHE) liquid containing
an island of another FQHE liquid. It is predicted that the resistance of this channel will be periodic in
the flux through the island, with the period equal to an odd integer multiple of the fundamental flux
quantum, ¢o=Ahc/e. The multiplicity depends on the quasiparticle charges of the two FQHE liquids.

PACS numbers: 73.40.Hm

Since the seminal works of Laughlin [1] and Halperin
[2], it has been recognized that the elementary excita-
tions (quasiparticles) in the fractional quantum Hall
effect (FQHE) [3] have fractional charge and obey frac-
tional statistics. These fractional quantum numbers
essentially follow from the incompressibility at fractional
filling factors, and their values can be determined from
rather general principles [4]. For the principle FQHE
liquids at filling factors [5]
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defined so that an exchange of two quasiholes produces a
phase factor of ™ [6]. It has been argued that the frac-
tionally quantized Hall resistance itself is a measurement
of the charge of the quasiparticles [7], but, on the other
hand, the Hall resistance is a property of the condensate
and therefore does not directly probe the excitations [8].
The observation of the “hierarchy fractions” has been cit-
ed as evidence for the fractional statistics of quasiparti-
cles [9], but it is clear that all fractions can be understood
without reference to quasiparticles at all [10]. Several
experiments have reported evidence for the fractional
charge [11]. However, their theoretical interpretation is
either not unique, or not completely understood. A
definitive and direct observation of the fractional charge
or the fractional statistics of the quasiparticles is there-
fore lacking.

In order to illustrate the basic conceptual difficulty
with the measurement of the fractional charge, consider
the Aharonov-Bohm (AB) geometry in Fig. 1(a). In the
FQHE regime, the current is carried by fractionally
charged quasiparticles, so it is tempting to expect that the
properties of the system, such as the resistance, will be
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periodic in the flux with period ¢§ =hc/e,, in analogy
with the argument of Byers and Yang (BY) [12]. How-
ever, in any true AB geometry, the period must always be
po=hc/e. The reason is that while the quasiparticles
may provide an effective description, the fundamental
particles are still electrons [13]. In fact, periods greater
than ¢g are ruled out by the BY argument (while smaller
periods are, of course, possible and do occur, e.g., in the
case of superconductors).

In this Letter, we consider a resonant tunneling experi-
ment and predict that, under certain conditions, the resis-
tance will exhibit approximate periodicity in flux with
period equal to an odd integer multiple of ¢o. An obser-
vation of this periodicity should provide direct and unam-
biguous evidence of the existence of fractional quantum
numbers in the FQHE. There have been other proposals
for the observation of the fractional quantum numbers
[14], but they deal with nonequilibrium situations. The

b

FIG. 1. (a) Standard Aharonov-Bohm geometry. (b)
Schematic drawing of the proposed resonant tunneling experi-
ment. The shaded area is the island of v=p/q FQHE liquid
surrounded by the v'=p'/q' FQHE liquid. The dashed lines
show the most probable tunneling paths.
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experiment proposed in the present work, on the other
hand, probes an equilibrium property of the system.

We consider the geometry of Fig. 1(b), in which a
(narrow) channel of v'=p'/q" FQHE liquid (where p’
and q' are relatively prime integers) contains an island of
area A of the v=p/q FQHE liquid. This could be pro-
duced experimentally by creating a gentle potential hill or
valley with the help of an external gate. The chemical
potential at the edges of the sample is assumed to be fixed
externally. The BY argument clearly does not apply in
this situation, since electrons occupy the entire sample. It
is possible for a quasiparticle to tunnel from one edge of
the channel to the other, which is actually a tunneling be-
tween two many-body configurations, one in which the
quasiparticle is on one edge, and the other in which it is
on the other. The tunneling amplitude determines the
longitudinal resistance, as was shown in a Landauer-type
formulation of the QHE [15]. The longitudinal resis-
tance exhibits peaks whenever there is resonant tunneling
from one edge of the sample to the other through a quasi-
bound state on the potential island [16]. The main con-
clusion of this work is that successive peaks occur when
the flux through the island changes by

o= %svo : (4)

where s is an integer, equal to the highest common factor
of g and ¢'. Since ¢ and ¢’ are, in general, odd integers, j
is also an odd integer. Note that j depends only on g and
q', i.e., only on the quasiparticle charges of the two
FQHE liquids.

To give the simplest derivation of this result, let us
change the flux through the v=p/q island liquid in a way
that no quasiparticles (quasiholes or quasielectrons) are
created in the bulk. This can be achieved by spreading
the additional flux over a sufficiently large area of the is-
land. The additional flux j¢o contracts the island liquid,
so that an additional charge jep/q is required to restore
the edge of the island FQHE liquid to its original state.
Since the charge must be supplied by j' quasiparticles of
the channel (v') FQHE liquid, we must have

JARy L (s)

Jq J PO
which leads to the period jgo given by Eq. (4). In partic-
ular, if v=0, i.e., if the island is charge free, the period is
¢o, since the channel FQHE liquid can return to its origi-
nal state by the transfer of p' quasiparticles from the
outer edge to the inner edge. [Thus, v=0 is to be inter-
preted as v=0/1 for the purpose of Eq. (4).] This is
equivalent to a gauge transformation of the original wave
function.

Let us now give a more microscopic description, which
takes account of the internal structure of the various
FQHE liquids. We use the framework of the composite
fermion (CF) theory [10], in which the wave function of
the v, FQHE liquid is given by

3004

Zn/(2n+1)=I;Ik (zj—zx) ¥, , (6)
J

where ¥, is the wave function of n filled Landau levels
(LLs), and z; =x;+iy; denotes the position of the jth
electron. Consider the situation when the island FQHE
liquid is v,— and the channel FQHE liquid is v,. This
state corresponds to an integer quantum Hall effect
(IQHE) state which has n filled LLs everywhere except
in an island where the filling factor is n—1. An integer
number (K) of electrons have been removed from the nth
LL to create the island [17]. In the IQHE state ¥, each
hole has an excess charge e associated with it. Upon mul-
tiplication by the Jastrow factor, I <« (z; —zx) 2%, which
converts each electron into a CF, each hole in the nth LL
of ¥ becomes a quasihole of the v, liquid, with an excess
charge e, =e/(2n +1) associated with it [18]. Therefore,
for K quasiholes, there is a net deficiency of charge Ke, in
the island region. This deficiency is related to the differ-
ence between the filling factors outside and inside the is-
land as

Ken =, —v,—1)(®/go) , @)

where ® =AB is the flux through the island. Thus, for K
quasiholes, the flux through the island is given by

D=KQ2n—1)g¢y. (8)

Addition or removal of a single quasihole requires a flux
change of (2n—1)¢o through the island, which gives the
period

AD=(2n—1)¢o. “

When the island liquid is v,+; (and the channel liquid is
Vn),

Ken(pg1=va) (@/gg) , (10)
and the period is given by
AD=(2n+3)¢p. an

In both cases, the periods are in agreement with the gen-
eral formula, Eq. (4).

It is instructive to consider this problem from yet
another perspective. We write pseudo wave functions in
terms of the coordinates of the quasiparticles, treating
them as point particles [2]. First consider the situation
when the channel liquid is v, and the island liquid is
vn—1. Since the low-energy states contain quasiholes in
the topmost level only (i.e., related to holes only in the
nth LL of ¥,), they fill a lowest LL of their own. The
most energetically favorable situation is when they com-
pletely fill the LL. The wave function is then

IT (n;—m) %exp | — L f‘, LS , (12)
j<k 4 = 12

where n; denote the positions of the quasiholes, and
l2=hc/e,B. The area of the island is given by (neglect-



VOLUME 71, NUMBER 18

PHYSICAL REVIEW LETTERS

1 NOVEMBER 1993

ing irrelevant corrections of order unity) [14(a)]

%0 6
A=K— .
B e,/e
With 6=0,, given by Eq. (3), this is identical to Eq. (8),
and gives a period of (2n—1)¢o. In the other case, when

the island liquid is v,+, we write the quasielectron func-
tion [2,19]

(13)

|12
12

n

Ls
4 /=
where now 7; are the quasielectron coordinates. In this
case, one is tempted to choose the quasiparticle statistics
0=0,. However, in order for the quasielectron wave
function to be regular as two quasielectrons approach one

another, which is required by the hermiticity of the Ham-
iltonian [20], we must choose the statistics to be [21]

_2n+3
2n+1

(The resulting quasielectron wave function can also be in-
terpreted as a FQHE liquid of quasielectrons of statistics
6, [2].) The period from Eq. (13) is (2n+3)¢,, as ex-
pected. From this perspective, the period can be inter-
preted as a measure of the ratio of the statistics to charge
of the quasiparticles of the channel FQHE liquid [see Eq.
(13)1.

We close with the following remarks.

(i) The above arguments actually show that for a con-
sistent description in terms of quasiparticles, they must
be assigned fractional statistics. Similar arguments had
originally led Halperin to discover that quasiparticles
obey fractional statistics [2].

(ii) It is interesting to see how the BY result is ob-
tained from the perspective of the quasiparticles. This
pertains to the situation when charge is completely dep-
leted from the island region. In the CF theory, this re-
lates to the IQHE state in which all n LLs are empty in
the island region. In the quasihole language, n LLs of
quasiholes are occupied. In analogy with the CF theory,
the wave function of this quasihole state is given by [21]

I'Ik(nj—nk)"""'\v,,. (16)
j<

IT (7 — ) “Pexp } , (14)
Jj<k

0=06,—2= (15)

The size of the droplet described by this wave function is
such that the flux through it is given by

K%

n B’
In this case, the number of quasiholes increases in units
of n (since, whenever it is possible to add a quasihole in
one level, it is possible in other levels as well), and we re-
cover the BY period of ¢g.

(iii) We have so far assumed that the v=p/q FQHE
liquid in the island is ideal. It is easy to see that the pres-
ence of a fixed number of quasielectrons or quasiholes in
this liquid will not alter the period. Whenever a new

i) a7n

quasiparticle is created, the periodic sequence will suffer
a phase shift. The same will be true when there are lakes
of other FQHE liquids inside the island; the period will
remain j¢o except when a new quasiparticle is created in
one of the lakes. Thus, in general, we expect finite se-
quences of peaks in the longitudinal resistance with the
predicted spacing. The larger the amount of the v=p/q
fluid in the island, the longer will be the length of the se-
quence.

(iv) We have neglected the Coulomb blockade effects
[22], which are expected to be small for sufficiently large
islands. These are also well understood and may be sub-
tracted out to reveal the effects discussed here. We note
that the periodicity of the effect does not depend on the
structure of the interface between the two FQHE liquids,
so long as it is narrow compared to the regions of the
FQHE liquids.

(v) Any j¢o periodicity (j#1) in the situation when the
island is completely depleted, as is presumably the case in
the experiment of Simmons et al. [11], must be a non-
equilibrium effect [14]. This should be experimentally
testable.

In conclusion, we predict conditions under which an in-
terference between two FQHE liquids allows the observa-
tion of an effective flux quantum, which is equal to an
odd integer multiple of the fundamental flux quantum.
The period depends on the quasiparticle charges of the
two FQHE liquids; in the case of two successive FQHE
states of a sequence, it can be also interpreted as a mea-
sure of the ratio of the statistics to the charge of the
quasiparticles of the channel FQHE liquid. This experi-
ment should also serve as a probe into the internal struc-
ture of the FQHE liquids.
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