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Local Time-Dependent Perturbation in Luttinger Liquid
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The response of the Luttinger liquid to a local potential is studied at zero temperature. It exhibits a
crossover behavior. On the largest time scale and in the case of repulsive electron-electron interaction,
the backscattering from the potential contributes to the core-ho1e Green's function G(t) the factor
(to/t) ' —a universal (potential independent) decay law. The orthogonality catastrophe remains of the
same analytical type as for the simple metals.
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The theory of the local time-dependent perturbation in

metals deals with infrared divergences, whose importance
is explicitly demonstrated by Anderson's orthogonality
catastrophe [I]. Know1edge of the response of a metal to
the local potential provides one with the general tool for
studying a variety of problems (x-ray response [2], two-
level systems [3], etc.). The behavior of a simple metal
under a local perturbation is well understood due to the
asymptotically exact solution by Nozieres and De Domin-
icis [4]. However, in one-dimensional metals the situa-
tion turns out to be qualitatively diAerent. Although one
arrives at results similar to those for a simple metal, pro-
vided that either the correlation eAects [5] or the back-
scattering from external potential [6] is neglected, it is
the interference of both which leads to an unusual behav-
ior of the response functions [7]. Because of one-
dimensional correlation eAects the perturbation theory in

an external potential breaks down for large time (low en-

1

ergy). Therefore the natural question [7] of the local

H =Ht + V(t),

Ht. =„dx[tlr+t( it) )tltp+y—t (it)„)y ]

response behavior on the largest time scale becomes high-
ly nontrivial. The present paper is answering this ques-
tion [8].

Furthermore, the interest in physical properties of
one-dimensional metals has recently been renewed in con-
nection with attempts to understand the physics of high-
T, superconductors, using an intuition developed for
one-dimensional systems [9] and also in response to the
progress in technology of one-dimensional semiconductor
structures (quantum wires).

The spin-charge separation in low-energy properties of
pure one-dimensional metals is well known [10]. The
external potential mixes spin and charge degrees of free-
dom [11]. Although the effects due to this mixing are in-

teresting by themselves, they seem to be not very impor-
tant for the response functions studied below. Any~ay,
for the qualitative understanding in this Letter the spin-
less model is considered.

The Hamiltonian of the problem is

(3)

+ —,
' „dxdy[2g2(x —y)p+(x)p (y)+g4(x —y)[p+(x)p+(y)+(+ ——)]],

where Ht. is the Luttinger s model Hamiltonian [12], y ~ are the left and right moving electron fields, p~ are the densi-
ty operators, and g24 are the interaction potentials in accordance with the standard "g-ology" notation [10]. The units
such that vF =1 and x is dimensionless are implied. The term V(t) describes the interaction of the electron system with
the external field and may be written in the form

V(t) =J dxt V(fxt)[ tlry+++( +——)]+Vt (x, t)[y+tIlr +H.c.]}. (2)
This expression decomposes the original potential V

~[which is assumed to be even: V(x) = V( —x)] into two tion with the potential [Eq. (2)] is reduced to the expres-
parts: V(x) Vf(x)+Vt, (x)cos(2kFx), corresponding sion linear in the density operators and therefore the
to the forward and backward scattering. Studying the x- problem can be completely solved by a canonical trans-
ray response one should consider V time independent but formation. This fact has recently been used by a number
multiply it by d d (d being the core-hole creation opera- of authors [6]. In the absence of correlations (g24=0
tor). but Vb~p), the problem admits the usual asymptotical

In this Letter the overlap integral (0~V) of the ground solution [5].
states of the Luttinger liquid with and without the exter- For the case when both g24 and Vt, are nonzero [7,13],
»1 potential is studied, as well as the core-hole Green s the lowest order of the linked cluster expansion contrib-
function G(t) =i(O~T[d(0)dt(t)] ~0), which determines utes the term,
the x-ray photoemission spectrum and serves also as a x &0

starting point for an investigation of two-level systems.
In the absence of backscattering (Vt, =0) the interac- 2 z Vo
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to lnG(t), where W is the high-energy cutoff (a band-
width), Vb is the zero Fourier component of Vb(x) [or
the 2kF Fourier component of V(x)], and y is a numeri-
cal coeflicient (which tends to unity for vanishing interac-
tion). The exponent

1v0=2 1
—— ]/2

I + (g4+g2)/2'

, 1+(g4 —g2)/2n
(4)

gq4 being the zero Fourier components of gq4(x). For
clarity g2=g4=g is assumed below. The scaling factor
2 & 1 for the repulsive interaction (g & 0) and A & 1 for
the attractive one (g & 0).

Equation (3) demonstrates the crucial role of the back-
seat tering for the local response: The singularity is
enhanced (for repulsion) and its analytical form is
changed from a logarithmic to a power-law one. The
physical reason for that is the enhancement of the
electron-hole excitations density of states for momenta
k=2kF. p,h(tv) ~to "'. That is closely connected with
the well-known enhancement of the Peierls susceptibility
[14]. Actually the fact that in the simple metals p, h ~ co

makes the perturbation theory applicable for an arbitrary
large time (all closed loops have the same logarithmic
singularities [15]). Therefore the local response of the
simple metals can be qualitatively described in the frame-
work of the Tomonaga-boson approach [16]. The excep-
tion is the model case when Van Hove points lie in the vi-
cinity of the Fermi surface [here an enhanced p,h(ai) is
built in simply due to the band structurel. This problem
is exactly solvable; in the large time limit the usual loga-
rithmic behavior is restored: In~G(t)~ = —41nt, but the
exponent is universal (potential independent) which cor-
responds to the unitary limit for the scattering phase
8= ~tt/2 [17]. It is shown below that a very similar
scenario holds also for the Luttinger liquid.

The second nonvanishing order of the linked cluster ex-
pansion contributes to lnG(t) a term ee Vb(0)(IVt)"',
where vi =2vo. Thus, the result Eq. (3) makes sense only
in the case of a weak potential (Vb«W) and serves as
the intermediate-t asymptotics (I/W« t « to) Here.
to I/too and—coo is a crossover energy, which can be es-
timated as

(6)
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Vb(0)
mo=R (5)

It is convenient to reformulate the problem, making use
of the identification [10]:

it +- (x)—(2tta) 't'exp[+ i J4ttiti ~ (x) ]-,

a being a cutoff' (a —I/W) and p+. (x) the right and left
movers of the scalar phase field p(x). A standard algebra
leads to the equivalent Hamiltonian:

0„,= dx [ —,
' [II'+ (a, y) '1+ vf (x, t ) |I y

+ vb (x, t )cos(44lr/+ P)],
where II(x) is the canonical momenta and the renor-
malized potentials are vf Vf/Jll(1+ g/tr), vb = Vb/

tra ( I +g/x) 't'.
Note that for the case of a point potential the forward

and backscattering processes are completely decoupled
(actually they are always decoupled on the large time
scale: see below). Indeed, the forward-scattering term in

Eq. (6) aff'ects only the odd parity (with respect to the
origin x =0) components of the field p(x), whereas the
backscattering term affects the even parity ones. In the
point potential limit the Hamiltonian may be written as a
sum of two commuting parts, corresponding to the for-
ward and backscattering. Thus,

G(t) =Gf(t)Gb(t) (7)
and the same for the overlap integral, provided that
vb(x) =vb8(x). The forward-scattering contribution

Gf (t ) has been found in the papers [6] and in what fol-
lows only Gb(t) is considered (vf can be omitted).

Clearly, in order to evaluate the large-t response one
has to understand the structure of the ground state (and
low-energy excitations) of the system in the presence of a
static external potential (impurity) first. The important
step is to recognize that the dynamics of the phase field

p(x =0, r ) at the impurity position is just the same as the
dynamics of a quantum dissipative particle in a periodic
potential (Ohmic case in the classification of Ref. [3]),
which has been intensively studied in the eighties [18].
This mapping can be achieved by integrating out all vari-
ables P(x, r ) with x &0; that requires the following
identification of the parameters: the high-energy cutoff'

the inverse mass of the particle and A ~2zg, g being
the friction coefficient. This analogy is known [19]. It
has been used for the solution of the quantum dissipation
problem along the critical line [20]: tI, = I/2tt 2, =I
(free fermions). A useful visualization for the problem is

an elastic string in a periodic potential (an elastic string
as a dissipative object has also been considered in Ref.
[21]). The attraction (g & 0) corresponds to i1 & t1,
(delocalization), the repulsion, to q & t1, (localization).

The quantum dissipation problem has been studied by
different methods, mainly by mapping it to a logarithmic-
ally interacting gas (of kinks or instantons [18]). For-
tunately, there is a simple variational approach (original-
ly used in the theory of roughening transitions [22]),
which provides one with a good idea of how the ground
state looks. The variational wave function is

+„,[P] = [Det(2ttK)] 't exp[ —
—,
' pK 'pj, (8)

where K(x,y) =(p(x)p(y)) is the static correlation func-
tion, subject to the self-consistency equation (which is to
be obtained by minimizing the energy).

In the case vb(x) =vb6(x) the algebra is straightfor-
ward and leads to the expression (similar to that dis-
cussed in Ref. [21])

p oo d QP

K(x,y) =
J

P ' [cos(p~x~+6;")
2z p

x cos(p ~y ~
+ 6~")+sinpx sinpyJ,

(9)
where Bz"= —tan '(v, ir/p) is the eff'ective scattering
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phase appearing in the Schro'dinger-type equation for
normal coordinates and v, tr

= (vblq)exp[ —K(0,0)/ri].
For ti & ti, one finds a convergent ((b (0)) = (I/2')
&& ln (1/acop) and v, tr

=a ' (avb ) "'. This value is in
agreement with the scaling results [18] and with the per-
turbation theory, Eq. (5). So there is the single crossover
in the problem and one can identify v,p as —cop.

Formally, for a potential which is not strictly 6 func-
tion (but still localized within a radius a), (b(x =0) has
no meaning of the dissipative particle coordinate any
more. Nevertheless, the situation remains qualitatively
the same: ((b (0)) is still convergent for rt & rt, due to the
general fact of the vanishing of the penetration coefficient
for a one-dimensional barrier in the low-energy limit
[23]. The variational approach can be easily generalized
for this case (the forward scattering also has to be includ-
ed) although the explicit calculation of v, ir(x) seems for-
midable. The effective scattering phase 6&, correspond-
ing to the odd parity components of the field (b, vanishes
as —pa at low energies. Thus, it should be emphasized
that, on the relevant energy scale (co((cop), any potential
aA'ects the system like a point one [particularly, Eq. (7)
holds for any potential, provided that t » tpl.

Note also that for the case of attraction the wave func-
tion of the string in the potential is qualitatively the same
(at large distances from the origin) as the one of a free
string (i.e. , delocalization). Thus, there is no reason to
expect orthogonality and one may argue that (OI V)b [as
well as Gb(t) for large t] is nonvanishing for g &0 (of
course, the orthogonality due to the forward scattering
remains).

The low-energy excitations above the ground state Eqs.
(8) and (9) are described by the eA'ective Hamiltonian

'd, D(z, z') = 8,Dp(z —z')

~p + 1

(OI V)b =exp' dk dzDi„(z, z)~0 &0 (i 2)

where Dq(z, z) is the solution of Eq. (11) with co(z)
=scope '0(z ), 8 =0+.

Note that the bosonic Green's functions have the same
analytical properties as the fermionic ones for zero chem-
ical potential [261:

Dp(co) = dEP(E) [(co —E+i6) ' —(co+ E —iB)

where P(E) = I/2tcE Theref. ore Hamann's technique
[25] can be straightforwardly applied to the problem
[27]. That leads to the following expressions for the tran-
sient Green's function (z, z' & 0):

dcodco' e +'" ' Dp(co) X+ (co)
Di, z, z'

(2tci)' co' —co —i& X+(co')

+ dz "B,Dp(z z")co(z")D(z",z'), (l l)

where Dp(z) = —i(T[(b(0)P(z)[) is the Green's function
in the absence of the potential. Since B,Dp(z) =i/[z—iasign(z)] coincides asymptotically with the kernel of
the Hilbert transformation, Eq. (11) is of the form ap-
pearing in the theory of aircraft wings [24]. Generally
speaking it is not exactly solvable. However, one should
keep in mind that the reduction of the problem to the
quadratic Hamiltonian makes sense only asymptotically,
for time intervals » tp. So, one is forced to retain only
the leading asymptotical terms for all responses. For-
tunately it is possible to find them even despite the ab-
sence of the exact solution of Eq. (11) for arbitrary co(z).

First calculate the overlap integral. It may be written
as [25]

H, tt= dx —,
' [II +(ci„(b)']+ —,

' copiti'(0) . (i 0) (i 3)

One has to stress that the above simple approach repro-
duces all the essential results of more sophisticated
methods (such as scaling) applied to the quantum dissi-
pation problem. It correctly describes not only the main
feature of the problem, the localization-delocalization
transition, but also results in a correct behavior of the
((b(0)(b(z )) correlation function (and gives a correct ener-

gy scale cop for the low-lying excitations). The physical
reason is that the further x is from the origin, the better
is the approximation of the problem by the wave function
Eqs. (8) and (9). It correctly describes just the tails of
the string, those responsible for the low-energy properties.
Therefore the eA'ective quadratic approximation may be
used for the calculation of the response functions [treat-
ing the potential energy term in Eq. (10) as time depen-
dent: cop co(z)] and, moreover, I believe that the cor-
responding results are asymptotically exact (i.e., for
t » tp).

Following Ref. [4] I introduce the local transient bo-
sonic Green's function D(z, z'), satisfying the equation

in l(OI V)b I
=

i6 ln(cop/h), (is)
where A=2tc/L, L being the length of the string. For the
core-hole Green's function a similar algebra leads to
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and the overlap integral
goo goo

lnI(OI v)b I

= — dk dE dE'
2&2 &0 ~P gP

~,(E)a,~,(E')
(E+E')

(14)
where

lnX+ (co) = (2tti) '
J dco'1n [Dp(co')/Dp(co') ]

x (co' —co —i6)
and Dp(co) is the Green's function in a static potential.
The scattering phase Si,(E) =tan '(scop/2E) has the
same origin as in Eq. (9). Note that the only diAerence
in the final expression for the overlap integral [Eq. (14)]
between the bosonic problem and the fermionic one is the
additional factor 2 [cf. Eq. (15) of Ref. [25]]. Perform-
ing the integrations in Eq. (14) one obtains the remark-
ably simgle result,
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ln
~
Gb (t )

~

= ——,
' ]n (t /t p), for t && t p . (16)

In conclusion, I have proposed the following scenario
for the Luttinger liquid response. First, for I/W «t « tp,
the asymptotics Eq. (3) holds. Note, that this asymptot-
ics is meaningful; it determines, for example, the energy
scale for a two-level system weakly coupled to the Lut-
tinger chain. For a larger time more and more singular
contributions come into play, which finally result in the
standard logarithmic behavior, Eqs. (15) and (16), but
with universal exponents (i.e., independent of the strength
and shape of the potential). The zero potential (vb 0)
limit corresponds to the vanishing of the region of appli-
cability of Eqs. (15) and (16): tp ~. In other words
the local response of the Luttinger liquid on the largest
time scale may be described by the effective scattering
shift for the bosonic field tb: 6= ~ tr/2.

The results can also be mapped for those for nonin-
teracting electrons. Indeed, in the latter case the overlap
integral may be written as [5]

2

ln[(0[ V) [/]nL =—
2

1
tan 'v R/(1 —R), (17)

27K

where p is the forward-scattering phase and R the
reAection coefficient at the Fermi energy [28]. The first
term in Eq. (17) is the forward-scattering contribution
(i.e. , zero interaction limit of the exponents obtained in
Ref. [6]) and the second one is due to the backscattering
and coincides with the result Eq. (15) in the limit of
R~ 1.
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