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Electron Correlation Resonances in the Transport through a Single Quantum Le~el
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Correlation efFects in the transport properties of a single quantum level coupled to electron
reservoirs are discussed theoretically using a nonequilibrium Green function approach. Our method
is based on the introduction of a second-order self-energy associated with the Coulomb interaction
that consistently eliminates the pathologies of previous perturbative calculations. We present results
for the current-voltage characteristic illustrating the different correlation e8'ects that may be found
in this system, including the Kondo anomaly and Coulomb blockade. We discuss the experimental
conditions for the simultaneous observation of these e8'ects in an ultrasmall quantum dot.
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The transport properties of a quantum dot coupled to
electron reservoirs have received considerable attention in
recent years from both the experimental [1] and the the-
oretical [2] sides. With the advent of nanotechnologies,
an ideal experimental device where tunneling takes place
through a single electronic level within the dot is now fea-
sible. DifFerent theoretical papers [3—6] have suggested
that the tunneling through this single quantum level can
be appropriately described by the Anderson Hamiltonian

neously. Based on these results, we shall also discuss in
detail the experimental conditions necessary to observe
those resonances in semiconductor nanostructures.

The transport properties of this model can be analyzed
by using the Keldysh formalism [9], where the retarded,
G", and the distribution, G+, Green functions are de-
fined as follows:

G,",(to) = i 8(t) (c~t (t—)c, (0) + c, (0)c, (t) )
e'"' dt,

H =) ep7lp + ) Tk(cqtcp +ct c~ )
v, k, o.

+ ) (eI + p )711 + UrlpTrlpt,
v, k, cr

where eo represents the quantum dot level, U is the ef-
fective Coulomb repulsion within the dot, ek + p,

" with
v = left or right denotes the reservoir single-particle en-
ergies, p, —p, = eV being the applied bias, and Tk the
coupling between the reservoir states and the quantum
dot level.

The Harniltonian (1) is expected to describe the main
correlation effects associated with the quantum dot. In
particular, a Kondo-like resonance near the Fermi energy
should be refIected in the current-voltage characteristic
at low voltages, when the dot level is nearly half filled.
On the other hand, a Coulomb blockade effect should lead
to a reduction in the conductance up to voltages large
enough to overcome the Coulomb repulsion in the dot
level. Previous theoretical efforts have been concerned
mainly with one of these two effects. In Refs. [3—5,7] the
Kondo effect is studied using a variety of techniques in
both the linear and nonlinear regimes, whereas the charg-
ing effects have been analyzed in Refs. [6,8]. The aim of
this paper is to present a solution for this model which
would allow us to describe accurately all the physically
relevant regimes, showing how many-body resonances ap-
pear in the current-voltage characteristic. We pay par-
ticular attention to the situation where features related
to the Kondo and charging effects may be found simulta-

t +, (m) = i (c~t(t)c, (0))e'"'dt .

These Green functions can be calculated by starting with
the L and B reservoirs decoupled from the dot level. This
case defines the unperturbed Green functions G(P1(m).
Then G(to) can be obtained by coupling the dot level to
the reservoirs and by introducing the self-energies Z" and
Z+ which take into account the Coulomb correlations
within the dot. Once the different Green functions are
obtained from the corresponding Dyson equations [9], the
current intensity I between reservoir v and the dot level
is given by

(3)

The crucial point in order to solve this problem is to
find a reasonable approximation for the self-energies. For
U = 0, Z = 0 and the exact C(to) can be easily obtained
using conventional Green function techniques [10].

The effect of a finite U can be included by using per-
turbation theory in U. This perturbative approach has
been extensively analyzed by Yoshida and Yamada [ll]
and Zlatic and Horvatic [12] (hereafter referred to as YY
and ZH) for the equilibrium Anderson model (zero ap-
plied bias). Hershfield et al. [3] have extended this ap-
proach to the nonequilibriurn case by calculating Ep (tu)
and Ep+ (to) up to second order in U.

In the YY and ZH approach, Zp (m) is calculated from(2)
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FIG. 1. Fulfi1.lment of the Friedel-Langreth sum rule as
a function of the dot level position using the second-order
self-energy as calculated: (a) starting from the Hartree-Fock
solution and (b) imposing self-consistency in the dot level
charge. The full line corresponds to the dot level charge
(np ) and the dotted line corresponds to ——'rl(0). Inset: Sec-
ond-order diagram used to calculate the self-energies.

the second-order diagram shown in Fig. 1 (inset), where
each Green function line is a Hartree-Fock dressed prop-
agator, whose retarded part is given by

~rHF
(

tU —ep + il l.(m) + il R(u))
(4)

where ep = ep + U(np-) and I = 2vr Q& ~
T&

x b'(rrj —eq).
Although this approximation gives a good description

of the electron correlation effects in the symmetric case
(ep = —U/2), it presents some drawbacks when one
moves away from this condition. In the equilibrium case
this is clearly illustrated by the failure of the Friedel-
Langreth [13] (hereafter referred as FL) sum rule that
relates the "impurity" charge (np ) to the phase shift
created by the impurity at the Fermi energy rl(0)
Im [ln Gp (0)].

Figure 1(a) shows the degree of fulfi11ment of the FL
sum rule, (np ) = ——rl(0), using the second-order self-

energy Zp (tp) in the YY-ZH approach. In this figure we(2)

compare (np ) with ——rl(0) as a function of the dot level
ep, for U/I' = 2.4rr, neglecting the frequency dependence
in I', and taking I'I, = I'R = I'/2.

Improvements over the above Zo are not easy to ob-(~)

tain. For instance, one could insert the full self-consistent
dressed propagators instead of the Hartree-Fock ones for
calculating the diagram in Fig. 1. This sort of self-
consistent perturbation theory is charge conserving [14]
and would verify the FL sum rule. However, it has been
shown that it leads to a poorer description of the quasi-
particle spectral density [15].

Our proposal to improve the YY and ZH approach is
the following: Instead of using the Hartree-Fock solution
as the initial one-electron problem for the calculation of

Eo, we use a different self-consistent field as a starting
point. In this initial one-electron problem the Hartree-
Fock level, ep, in Eq. (4) is replaced by an effective level

e,p, which is determined by imposing self-consistency
between the initial and final dot level occupancies. As
shown in Fig. 1(b), this way of calculating the second-
order self-energy gives a solution that closely verifies the
FL sum rule.

Notice that this procedure is formally correct within
perturbation theory: We have decomposed H = H,p+U,
where H« is the one-electron part of Hamiltonian (1)
with eo replaced by e,p, and we treat U = H —H,p as
a perturbation. The fulfillment of the FL sum rule and
the condition of charge consistency provide an appealing
interpretation for e« . It must behave like ep+ReZp (0),
the effective potential at the Fermi energy. Obviously, for
the symmetric case our approach coincides with that of
YY and ZH.

This procedure allows us to get a good description
of the Kondo-like peak appearing around the Fermi en-

ergy and the overall behavior of the spectral density for
a broad range of parameters (ep, U/I ). However, for
high values of U/I' and far from the symmetric situation,
the position and the spectral weights of the resonances
around expand ep +'U are not so well described [16]. The
reason is that E& does not yield the atomic limit when
m U )) I'. To improve the solution given above in this
region we introduce the following self-energy [16]:

g+ (2)
Zp (rL)

1 —~Z",.'"(~) '

with

(1 —(np-))U+ ep —e«
(np- ) (1 —(np-) ) U'

which has the virtue that it yields the appropriate atomic
limit [16,17], for tp U and I /U —+ 0, and behaves like

Ep( for U/I' —+ 0.
Let us now turn our attention to the nonequilibrium

situation. For the sake of simplicity, we shall assume
that in Eq. (1) p~ = —p+ = eU/2. Following our ap-
proach for the equilibrium Anderson model, we obtain
the different nonequilibrium self-energies, Zo and Zo
by introducing the effective levels e,g, p,&, and p,,& in
the initial one-electron Hamiltonian

H, ir
= ) .e«~np~ + ) .(ei + @err)na~

v, k, cr

+ ) T'(4'. cp- + cp.4.)
v, k, cr

As a natural extension of our procedure for the equi-
librium case, e,&~, p,,&, and p,,& are determined by im-

posing self-consistency in the dot level charge and in the
currents IL, and IIr defined by Eq. (3).

Equation (6) allows us to calculate the one-electron

Green functions C that will be used to obtain Z&
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FIG. 2. Current I and difFerential conductance g obtained
using our method for ep = —m and U = 0 (a), 7r/2 (b), n (c),
2m (d), and 4vr (e). All the energies are measured in units of
the elastic decay rate at the dot I".

and Ep ( ) by means of a second-order perturbative cal-
culation, and finally Zp (ui) and Zp+ (to) by using the
equivalent of Eq. (5) for the nonequilibrium case.

Let us remark that our method eliminates, in a natural
way, the pathologies that arise when the perturbation is
performed upon the Hartree-Fock solution. In the non-
equilibrium case these pathologies are reflected in the
unphysical behavior of the dot level charge as a func-
tion of ep (around ep —U/2); the currents II, and Iz
also exhibit unphysical features [3] including violation of
current conservation (II, g IIt). A detailed comparison
of the results given by the different approaches, together
with a more comprehensive discussion of our method, will
be presented in a future publication.

In order to illustrate the kinds of results obtained by
our method we have considered two different situations,
with the dot level below (Fig. 2) and above (Fig. 3) the
Fermi energy, respectively. In the second case the dot
level is almost empty at zero bias.

Figure 2 shows the current intensity, I, and the dif-
ferential conductance g = BI/OV, as a function of the
applied bias, for ep = —7r and U = 0, vr/2, 7r, 2x, and
4~, where all the energies hereafter are measured in units
of I'. Our results for g show a single broad peak around

V = 2' for U = 0; this corresponds to the dot level
eo ———vr crossing the right reservoir chemical potential
p = —V/2. For small U (U ( [ep ) this one-electron-like
resonance is shifted and adopts a somewhat asymmetric
shape. On the other hand, for large U (see case U = 4vr in
Fig. 2) three different features are clearly present in the
current-voltage characteristic. The conductance peak at
V = 0 is related to the Kondo resonance appearing in the
dot spectral density around the Fermi energy [3], while
the peaks at U = 2' and V = 4' correspond to the
crossing of the dot "ionization" and "affinity" levels, ep

and eo + U, with the reservoir's chemical potentials. We
should comment that these two peaks reflect the charg-
ing efFects associated with the dot level: The second level
can only be filled when the applied bias overcomes the
repulsion between the second and the first electrons. For
the particular case U = 2x we have a symmetric prob-
lem with the two dot levels crossing the left and right
chemical potentials at the same bias, V = 2~, leading to
a single "charging effect" peak. Notice that in this case
the conductance at V = 0 reaches its maximum value
2e~/h. Finally, the case U = m illustrates the transi-
tion between small and large U, with a new correlation
structure arising due to the overlap between both Kondo
and charging effects, the resonances merging into a broad
peak around V = 0. This transition is also apparent in
the current intensity I(V) shown in Fig. 2, where the case
U = vr defines the border between the highly correlated
limit (Kondo and charging effects completely separated)
and the one-electron-like behavior.

Figure 3 shows I(V) and g as a function of V for ep ——

3vr and U = 0, 2x, 4x, and 6'. In these cases the dot level
is above the Fermi energy, and for V = 0 no Kondo-like
peak appears in the spectral density of states. As before,
the two peaks appearing in the differential conductance
for U & 2' are related to the filling of the ionization, t g,
and affinity, ep + U, levels as a function of the applied
voltage. As shown in Fig. 3(b), the voltage difference
between the two peaks for U & 2x is approximately equal
to 2U. On the other hand, the conductance peak at V =
2t 0 is reduced to nearly half its U = 0 value when the
interaction increases. It is also worth noticing that the I-
V curve in this case exhibits a steplike behavior which is
more pronounced for increasing values of U. The relative
height of these steps is in agreement with calculations
based on a simple atomiclike model for the dot Green
functions [8].

Figures 2 and 3 show the different kinds of current-
voltage characteristics one gets for the single dot level
described by Hamiltonian (1). For U sufficiently large,
two resonances associated with the ionization and aKnity
levels can always be observed in the differential conduc-
tance. In this case correlation effects are very important,
giving rise to an additional resonance at U = 0 when the
ionization level is initially filled.

The results found in this paper suggest that the Kondo-
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present in the I-V characteristic.
In conclusion, we have presented an accurate solution

for the many-body problem of a single dot level between
two biased reservoirs. Our results show the experimen-
tal conditions one should achieve to observe in the dif-
ferential conductance a peak related to the Kondo-like
structure in the density of states, and a complementary
structure associated with the charging effects of the dot
level. By adjusting appropriately the dimensions and the
doping of a quantum semiconducting dot, we have shown
how the different peaks could be determined by rneasur-
ing the differential conductance.
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FIG. 3. Same as Fig. 2 for ec = 3vr and U = 0 (a), 2vr (b),
47r (c), and 6~ (d).

like resonance and the peaks associated with the charging
effects of the quantum level could be found simultane-
ously in a quantum dot, provided that the temperature
is sufBciently below the Kondo temperature. As an exam-
ple, we consider a GaAs dot of size L 100 A both in the
vertical and lateral directions, sandwiched between two
GaAs wires and two AlcaAs barriers, as those studied in
Ref. [18]. A single bound level around 50 meV is found boun y
solving numerically a simple double barrier model with
a barrier height 300 meV. The parameter U can be
evaluated as the Coulomb integral for the wave function
corresponding to this bound level, which roughly yields
U e /eL 15 meV, in agreement with the dot classi-
cal capacitance energy [8]. Then, varying the AsGa wires
doping around 10 /cm, one could get an experimental18 3

device close to some of the theoretical cases analyzed in
Figs. 2 and 3. In particular, for n = 10 /cm and a
barrier width of 30 A, we find eo/I™—3 and U/I' = 8 )

not far from one of the cases presented in Fig. 2. We
should recall that Gnite conduction band effects are not
included in our present calculation; one should always
keep in mind that for U sufBciently large the effect of
the bottom edge of the semiconducting wires would be
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