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Comment on "Adsorbate Structures from
Photoelectron Diffraction: Holographic
Reconstruction or Real-Space Triangulation?"

In a recent Letter, Dippel et al. [1] have proposed a
method for adsorbate structure elucidation based on the
behavior of backscattered photoelectrons at low kinetic
energies (=50-400 eV). They note that peaks (valleys)
in a scanned-energy photoelectron diffraction curve for a
two-atom system such as emitter F. and scatterer St in

Fig. 1(a) from which photoelectrons are observed near
the backscattering condition (i.e., for 8 near 90') repre-
sent constructive (destructive) interference conditions,
and thus that a 0 scan in the constructive (destructive)
condition yields a peak (valley) directly along the bond
direction. They proposed to extend this idea to the
nearest-neighbor backscatterers of a real adsorbate on a
multi-atom substrate. The authors recognized possible
complications that could arise due to the presence of oth-
er large-angle near-neighbor backscatterers away from
the two-atom backscattering direction, and suggested
correcting for such eA'ects by using 0-dependent con-
structive/destructive intensity ratios collected at energies
appropriate to the two-atom system.

In this Comment, we point out that diAraction eAects
due to such large-angle near-neighbor scatterers could,
for an important class of realistic bonding geometries, be
strong enough to make this method invalid. To explore
this, we first performed scanned-energy photoelectron
diAraction simulations over the interval 90-400 eV for a
Ni scatterer placed 2.0 A directly behind an s p
emitter [the two-atom cluster of E and St in Fig. 1(a)]
[2]. Analogous simulations were then performed on a
cluster including four additional near-neighbor scatterers
S2 in a square pattern. The E to S2 distance d was
varied systematically from 1.8 A to 2.8 A in 0. 1 A steps
by moving the S2 scatterers radially outwards. Following
Dippel et al. , we then averaged six constructive/de-
structive intensity ratios (A/B', B/C', B/B', C/C', A/C',
and C/B' of Fig. 1 in Ref. [1]), and these averages are
shown as a function of 0 for various d values in the solid
curves of Fig. 1(b).

If the method of Dippel et al. is to be universally reli-
able, a peak should always be found for 0=90 in these
constructive/destructive intensity ratios. However, for
the reasonable bond length range of 2.0-2.3 A for which
destructive interference occurs between waves scattered
from the four scatterers Sq and that from the back-
scatterer St, this is not the case, and the bond direction
would be misestimated by as much as ~ 13 . Also
shown in Fig. 1(b) are dashed curves for a much larger
cluster of thirty atoms which should include all important
scatterers [3], as calculated in multiple scattering; the
same general behavior is seen. Finally, we note that
geometries very close to that of Fig. 1(b) with next-
nearest-neighbor to nearest-neighbor distances in the ra-
tio of 1.0-1.1 are indeed found for real atomic adsorbate
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cases such as C/Ni(001), N/Ni(001), 0/Cu(001), and
0/Cu(110) (see e.g., Refs. [13], [15],and [16] in [1]).

We thus believe that this method should be applied
with considerable caution, as it seems certain that anoma-
lous cases will arise for which the real-space triangulation
proposed will lead to significant errors. The use of holo-
graphic reconstructions that is criticized by comparison in

this Letter thus remains in our opinion a fruitful alterna-
tive approach for the first step of an adsorbate structure
determination.
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FIG. I. (a) Six-atom cluster used in simulations. (b) Aver-
age of six constructive/destructive intensity ratios as a function
of 0 and d. Solid curves calculated for the six-atom cluster in

single scattering; dashed curves for a larger thirty-atom cluster
with more extended substrate and in multiple scattering. The
analogous average ratio for the two-atom E+S cluster is shown
as the bottom curve.
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