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Thermal Distribution of Relativistic Particle Beams with Space Charge
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The Maxwell-Boltzmann ("thermal" ) distribution constitutes the natural thermodynamic equilibrium
state for a charged particle beam, and knowledge of its properties is therefore of fundamental impor-
tance. The Boltzmann relation for the particle density has a nonanalytic form when the space-charge
force is included. We use numerical integration to determine the transverse and longitudinal density
profiles for a relativistic beam in a linear focusing system at diAerent temperatures T& and T]]. The cal-
culated profiles are related to space-charge tune depression, rms width, perveance, and emittance of the
beam.

PACS numbers: 41.85.Ew, 29. 17.+w, 29.20.—c, 52.25.Wz

Many advanced charged particle beam experiments
and applications, such as high-power microwave sources,
free electron lasers, linear accelerators for heavy-ion iner-
tial fusion, spallation neutron sources, radioactive waste
transmutation, high-energy colliders, and other uses, re-
quire very high beam intensity so that the beam dynamics
depend strongly on the particle density profile. It is
therefore of fundamental interest to know the equilibrium
state of the charged particle beam for a given situation.
Thermodynamically, this equilibrium state is best de-
scribed by a Maxwell-Boltzmann ("thermal" ) distribu-
tion with difIerent transverse and longitudinal tempera-
tures (T& and T~~) since in practice many beams are not
equipartitioned. Many eA'ects lead to coupling between
T& and Ti [1]; we deal here with cases where the cou-
pling is small. When space-charge forces are significant
the equilibrium density profiles have a nonanalytic form
and must be found numerically, which explains why the
thermal distribution has received less attention in the
literature on beam theory than it deserves. Lawson [2]
has published numerical results for the radial density
profiles of a continuous nonrelativistic thermal beam in a
linear focusing channel. In our work reported here we
extend Lawson's results by including the relativistic fac-
tor y, correcting an error, and correlating the density
profiles with space-charge tune depression, perveance,
and emittance of the rms equivalent uniform (K- V)
beam. In addition, we determine the line-charge density
profiles for a bunched beam with linear longitudinal
focusing forces for diN'erent longitudinal temperatures
and relate the results to the tune depression and other pa-
rameters of the rms equivalent parabolic bunch.

The equilibrium distribution f of a group of charged
particles in a focusing channel can be found from the
Vlasov equation. We assume that the potential can be
written as the sum of a transverse potential p&(r) and a
longitudinal potential p~~ (z ) in cylindrical coordinates,
and that the beam and focusing system are uniform, or
"smooth. " Each of these potentials is the sum of a self-
component [p~, (r) and p~~, (z)] and an external focusing

component [p&, (r) and p~~, (z)].
The Maxwell-Boltzmann distribution has the form

f=fo exp( —H/ktt T), where H is the single-particle
Hamiltonian, kg is Boltzmann's constant, and T is the
temperature. It is a very special case of this class of equi-
librium distributions in that it satisfies both the steady-
state Vlasov equation as well as the Fokker-Planck equa-
tion which includes the eA'ects of collisions (see Ref. [1],
Chap. 5.4). Because of the longitudinal cooling by ac-
celeration and other eAects, a charged particle beam is
generally not in a 3D equilibrium; i.e., the longitudinal
temperature T~~ diA'ers from the transverse temperature
T~. We therefore write the distribution in the form

f=foexp( —H&/kttTi)exp( —Hii/kttT()) .

For a relativistic beam with nonrelativistic transverse
and longitudinal velocities in the beam frame where the
centroid is at rest, the Hamiltonian for the laboratory
frame is given by

HJ- yo " -L +q(t ~, Hii =
yo

(trav

ti ) +q4ii, (2)

where m is the mass and q the charge of the particles, v &

is the transverse velocity, h, v]~ =v[] —vo is the relative lon-
gitudinal velocity with respect to the mean (centroid) ve-
locity vo, yo=(1 —po) ', po=vo/c, and c is the speed
of light. The "laboratory" temperatures are related to
the beam-frame temperature To by T=To/yo, and are
defined by yomt'~ =2kaT~, yom(&vi~)'=kttT~~. By in-

tegrating the distribution (1) over the velocities one ob-
tains the well-known Boltzmann relation [—exp( —qp/
ktt T)] for the transverse and longitudinal density profiles.
We solve for two general cases: (A) the radial profile of
an infinitely long beam and (B) the longitudinal profile of
a bunched beam.

The radial density profile for case (A) can be obtained
by integrating the Poisson equation over the radius ~ and
substituting into the Boltzmann relation, which yields
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FIG. 1. Particle density of the
thermal distribution as a func-
tion of radius for diA'erent tem-
peratures. In (a) the external
focusing force is constant; in (b)
the focusing is changed to yield
the same rms radius for each
curve. The pertinent parameters
are listed in Table 1.

n(r) =exp
n(0)

q "'1
r "n (r")dr "dr'

epkg T& yp
o r' (3)

The factor yp in the denominator of the integral term 12

represents the attraction (1 —
Pp =yp ) due to the mag-

netic self-forces of the beam. Lawson [2] has solved Eq.
(3) numerically for a nonrelativistic beam (yp=1) in a
linear focusing channel defined by the potential p&, (r)
=

2 ypmc Ppkpr, where kp is the focusing wave con-
stant. In Fig. 1(a) we reproduce for ease of comparison
Lawson's radial density profiles for eight temperatures
with an additional curve (7a), and in Fig. 1(b) we have
normalized these profiles so that the rms radius remains
constant. The profile is exactly uniform at T& =0, and at
low temperatures, it falls oA at the edge in a distance on
the order of the Debye length, as shown analytically by
O' Neil and Driscoll [3) and by Hofmann and Struck-
mejer [4]. At high temperature (T~ ee) or high ener-

gy when space-charge forces are negligible, the profile ap-
proaches a Gaussian shape, consistent with observations
in high-energy accelerators and storage rings [5].

The parameter A,D(0)/ap, the Debye length on axis di-
vided by the radius of the zero-temperature beam, ap, can
be calculated for each of these curves by the relation

XD(0)

Qp

&/2
epkg T~yp

q NL

Znp

n(0) (4)

where no=2@ yppmcPpk /pq is the density of the zero-
temperature beam, n(0) is the density on axis of other
profiles, and AL is the number of particles per unit
length. At high temperatures the space-charge force be-
comes negligible compared to the external focusing force.
Integrating the density over a spatial cross section then
leads to NL =4zn(0)epkaT&yp/q np, which can be sub-
stituted into Eq. (4) to get XD(0)/ap =no/2n(0) Our.
values given for XD(0)/ap in Table I converge towards
this analytic result with increasing temperature.

Lawson listed the ratio n(0)/np and XD(0)/ap for each
of the eight profiles [2]. We could not reproduce his
values for XD(0)/ap, which do not converge towards the
limiting value of np/2n(0). We attribute this to a possi-
ble error in his normalization procedure. Table I shows
the numbers for n(0)/np and what we believe are the
correct values for XD(0)/ap, with Lawson's results given

TABLE I. List of relevant parameters for the radial Boltzmann density profiles of Fig. 1(a)
and the density on axis for Fig. 1(b).

n(0)/n p XD(0)/ap r/r p kala Ka /e klkp n(0)/np(r =rp)
1

2
3
4

6
7

70
8

0. 1

0.25
0.5
0.75
0.95
0.995
0.9995
0.999995
1

4.82(14.6)
1.81 (3.9)
0.795 (1.3)
0.432 (0.58)
0.229 (0.27)
0.145(0.16)
0.107(0.12)
0.071
0

4.43
2.75
1.88
1.46
1.18
1.08
1.04
1.02
1

1.52
0.905
0.562
0.374
0.223
0.144
0.107
0.071
0

0.054
0.153
0.396
0.893
2.51
6.00

10.9
24.8

0.974
0.931
0.846
0.727
0.534
0.378
0.290
0.197
0

1.96
1.89
1.77
1.60
1.32
1.16
1.08
1.04
1
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The last column in Table I shows the density on axis for
the case where the profiles are normalized to have the
same rms radius (e.g. , by increasing the focusing
strength).

We next solve the Boltzmann relation for case (B),
with a linear external focusing force given by the poten-
tial function

z
/lie (z) =

4110 2
l

zo
(6)

where allo= —
&11,(0), &11, =0 at z =zo, and z =s —so is

the diAerence between the position s of a particle and the
centroid position so. The eA'ective potential function
pt, (z) due to the self-fields can be related to the longitu-
dinal line-charge density pL(z) to good approximation by

in parentheses. In addition, we calculated and listed for
each profile the values for the rms radius r divided by the
rms ratio ro of the zero-temperature beam, the ratio of
the average Debye length XD to the eA'ective beam radius
a =J2r, the space-charge parameter Ka /e, and tune
depression k/ko. The last two parameters are obtained
by comparing each profile with the equivalent uniform
(K-V) beam having the same rms radius, rms emittance,
and generalized perveance K =(I/Io)(2/Ppyo), where I is
the beam current and Io =4xeomc /q =mc /30q the
characteristic current. The average Debye length is cal-
culated using the relation XD/a = [XD(0)/ao] [n(0)/n ]o'

and the eA'ective emittance e is related to the rms emit-
tance e by e=4e. If k and ko denote the focusing wave
constants with and without space charge, we find the fol-
lowing relation between k/ko, Ka /e, and XD/a:

' 2

=8 '
(s)

a

pends on z /a, the ratio of the semiaxes z and the
bunch radius a, and on b/a, the ratio of the conducting
tube radius b to the bunch radius. By substituting (6)
and (7) into the longitudinal Boltzmann relation one ob-
tains

pL (z) qtt'llo z qgpE (0)
=exp 2+ 1—

PL(0) kBTll zti 47rEopokiiT11

pL(z)
pl. (0)

which represents a parabolic line charge density. In this
limit (Tll 0), the thermal distribution thus agrees with
Neuffer's model [7] in which the line-charge profile is
parabolic over all parameter ranges, whereas the thermal
profile becomes more Gaussian with increasing tempera-
ture, as seen in Fig. 2. The linear behavior of a parabolic
line-charge profile in a low-temperature beam with linear
external focusing has recently been studied experimental-
ly [g].

Each density profile can be correlated with the
equivalent parabolic beam of half length z having the
same longitudinal rms width z and rms emittance
8, =z k„where z =v 5z. k, and k, o are the focusing
- =-2
wave constants with and without space charge and Kz is
defined by

This can be rearranged to get z as a function of
pL (z)/pL (0).

The profiles pl (z) for eight temperatures are given in

Fig. 2. In Fig. 2(a) the focusing force is kept constant
while the profiles in Fig. 2(b) are normalized to have a
constant rms bunch length (for clarity, only four are
numbered). For the zero-temperature profile we find that

2
II'

4«o]'oqtt'to z
pL (z 1— 9

zo

gpL (z )
&11,(z) =

2
+const,

4neoyo
(7) KL =—

2 s =z~(k, o
—k, ),gNr,

o fo
(l 0)

where g is the geometry factor [6] of order unity that de- where N is the total number of particles in the bunch and
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FIG. 2. Line-charge density
as a function of longitudinal dis-
tance z from the bunch center
for dilTerent temperatures. (a)
Constant focusing and (b) con-
stant rms width. The parame-
ters for each curve are listed in

Table I I.
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TABLE II. Parameter values for the eight longitudinal charge density profiles in Fig. 2(a),
and the line-charge density at the center for Fig. 2(b), with an additional profile (7a) which is

not shown in Fig. 2.

Curve

1

2
3
4
5

6
7

7a
8

ktt T ti/qPiiio

10
5
2.5
1

0.5
0.25
0. 1

0.05
0

pL (0)/pro

0.237
0.332
0.455
0.645
0.777
0.873
0.947
0.974
1

z/zo

5.03
3.59
2.59
1.76
1,41
1.21
1.09
1.05
1

k, /k, o

0.994
0.985
0.965
0.898
0.793
0.653
0.459
0.338
0

pc(0)/pt. o(z =zo)

1.19
1.19
1.18
1.14
1.10
1.06
1.03
1.02
1

r, =q /4trepmc is the classical particle radius. We find

that

kaT]i

qtt'imp

2 -2 i 1/2
2 kz Z kz 5 kgTii

k, p zp k, p 2 qPIIp

Zo

Zm

[I] M. Reiser, "Theory and Design of Charged Particle

since zp/z =zp/z
The results for the tune depression k, /k, p for the longi-

tudinal particle oscillations shown in Table II have been
calculated from Eq. (11). They can be correlated with
the longitudinal perveance parameter KL by Eq. (10).

In conclusion we note that the spatial shape of the
thermal distributions for different operating regimes is of
fundamental interest and particularly important for the
applications mentioned in the beginning. Nonstationary
beams, e.g. , those with the wrong density profile or
mismatched to the focusing channel, relax towards the
equilibrium state via emittance growth and halo forma-
tion [9-11],and the high-energy Gaussian tails may lead
to beam spill across the transverse and longitudinal
phase-space boundaries. A more detailed discussion of
the beam physics involved and derivation of the relations
presented in this Letter will be given in Ref. [1].
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