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Electrohydrodynamic Deformation of a Particulate Stream by a Transverse Electric Field

D. A. Saville

Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544
(Received 8 June 1993)

A theory is presented for the electrohydrodynamic deformation of a thin fluid stream and applied to
the experiments of Rhodes, Snyder, and Roberts on colloidal dispersions. The resulting transverse veloc-
ity field has a symmetric four-lobe structure and, when the conductivity of the sample is greater than
that of the surrounding fluid, the sample deforms into a ribbon whose axis is parallel to the incident field.
The ribbon axis is perpendicular to the field if the conductivities are reversed. Electrohydrodynamic ve-
locities are of the order of microns per second and the theory agrees with the qualitative and quantitative

features of existing experimental data.

PACS numbers: 47.65.+a

Sample dispersion caused by various mechanisms limits
resolution in electrokinetic techniques used to analyze or
purify mixtures of proteins or cellular material; under-
standing these processes is a prerequisite for developing
methodologies with improved resolving power. In a clever
set of experiments on a model system, Rhodes, Snyder,
and Roberts [1] identified a new electrohydrodynamic
dispersion mechanism—deformation of the sample
stream into a thin ribbon whose cross-sectional shape de-
pends on conductivities of the stream, o;, and the sur-
rounding fluid, op. An ac field was used in these experi-
ments to suppress electrokinetic effects. Figure 1 depicts
their apparatus schematically; a buffer fluid carrying a
thin stream of a dilute colloidal dispersion moves through
a cell of rectangular cross section. The transverse ac field
deforms the sample stream into a ribbon whose axis is
parallel to the imposed field when o5 > op; when o5 < oy
the ribbon axis is perpendicular to the imposed field.
There is no deformation when the conductivities match.
Rhodes, Snyder, and Roberts [1] recognized that the de-
formation is an electrohydrodynamic effect, proportional
to the square of the electric field strength. They used
Taylor’s leaky dielectric model [2], wherein fluids behave
as uniform, polarizable, Ohmic conductors with sharp in-
terfaces, to derive a discriminating function
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FIG. 1. Schematic diagram of the Rhodes-Snyder-Roberts
cell [1]. As shown, the conductivity of the circular sample
stream exceeds that of the surrounding fluid so the axis of the
deformed stream is parallel to the incident field.
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to classify deformations. & and g, denote dielectric con-
stants of the sample stream and the surrounding fluid.
For D > 0 the deformation is in the direction of the field,
when D <0, the deformation is transverse. Although the
dielectric constant of a dilute suspension, g, is usually
large at low frequencies, it drops towards that of the
suspending fluid at high frequencies [3]. Rhodes, Snyder,
and Roberts [1] argued that in their high frequency ex-
periments &;/g, was near 1 and so theory and experiment
agreed.

Nevertheless, there are a number of reasons to doubt
the applicability of the leaky dielectric model to the phe-
nomena observed. First, an essential feature of the leaky
dielectric model is the appearance of free charge at sharp
interfaces because of unequal electrical conductivities and
dielectric constants on opposite sides of the surface [2].
The action of the field on the free charge contributes to
both normal and shearing stresses. Although the inter-
face between the particulate sample and the surrounding
buffer was diffuse in their experiments, Rhodes, Snyder,
and Roberts [1] assumed a sharp transition to employ the
leaky dielectric model. It is unlikely that free charge
would accumulate near the gradual transition between a
dilute suspension and clear fluid in the fashion envisioned
in the leaky dielectric model, so the stresses calculated
with this model will not represent those present in an ex-
periment. Furthermore, experiments at frequencies [4]
where the dielectric constants of the sample and buffer
differ fail to disclose the dependence on &;/¢, given by the
leaky dielectric discriminating function. Other dc experi-
ments with suspensions or soluble samples [S] exhibit
sample mixing which cannot be explained by effects due
to the electric charge. Accordingly, another electrohy-
drodynamic model must be used to explain the dispersion.

The model employed here recognizes that the transition
between the sample and the buffer is diffuse and that free
charge on the length scale of the sample, per se, is absent.
Since the length scale characterizing the free charge den-
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sity in an electrolyte solution is the Debye length, x ',
free charge effects are negligible when x ~! is small com-
pared to the particle size. According to Landau and
Lifshitz [6], the electric force density in rationalized units
is

fe=lV

E2
) eoL "p

ili] }—lsoE2Vs+peE. 1)
dp | 2

Here g stands for the permittivity of free space, ¢ is the
local dielectric constant, p is the mass density, p. is the
electric free charge density, and E is the local electric
field. The first term is the gradient of a scalar and can be
absorbed into the pressure; the free charge density is zero.
Thus, fluid motion is described by solutions to the Stokes
equations with a distributed electrical body force due to
dielectric constant variations, viz.,

0=—Vp— + &E>Ve+uV?u and V-u=0. )

When the axial shear rate is small, buffer and sample
move at the same velocity and sample deformation can be
studied as a two-dimensional problem in a plane perpen-
dicular to the sample axis.

The current density stemming from the electric field
applied transverse to the sample can be expressed as the
product of the local conductivity and the field since, in
the absence of concentration gradients, the individual ion
flux equations can be summed to yield Ohm’s law. The
argument is as follows. lons are conserved so the ion
fluxes, J;, are solenoidal. Next we assume that the indivi-
dual ionic mobilities w; are the same and that the flux re-
lation (the Nernst-Planck relation) is J;,=w;lez;n;E
—kTVn;]. Here e is the charge on a proton, z; is the
valence of the ith species with concentration n;, k is
Boltzmann’s constant, and T is the absolute temperature.
Since the solution is electrically neutral on the length
scale in question, Xz;n; =0. Accordingly, the current
simplifies to Xez;J; =X (ez;)?w;n;E. Defining the con-
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FIG. 2. Definition sketch showing the orientation of the in-
cident field and the polar coordinate system. The inner circle
(r=a) delineates the beginning of the transition in electrical
conductivity and dielectric constant. The transition is complete
at the outer circle (r =a +6). The vertical line at x =a denotes
the locus of points where the x component of velocity is calcu-
lated for display in Fig. 4.
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ductivity as o= (ez;)%w;n; and noting that the fluxes
are solenoidal yields the “macroscopic” equation for the
local field strength

V-cE=0. 3)

Of course any transverse motion will deform the sample
and alter the conductivity and dielectric constant from
their initial distributions. To simplify matters and cap-
ture the silent features of the phenomenon, these effects
are ignored. Instead, a circular sample configuration of
radius a is used to calculate a flow field which represents
the initial stages of the deformation process; see Fig. 2.
The conductivity and dielectric constant distributions are
expressed as

o=o05 &=g, 0<r<a,
o=%6+§—Aocos%, a<r<a+s,
4)
e=5&+ %Aecos—-—————”(r_a) ,
)
c=0p, £€=&, atéd<r<oo,

to represent the diffuse transition from the properties of
the sample to the buffer. Here 6=o0;+ o), Ac=0; — 0p,
£=¢g;+¢p, and Ac=g; — gp.

The structure of the velocity and electric field allows
the variables to be separated. In polar coordinates the
electric potential, ¢, can be represented as f(r)cos@ while
for the velocity field the stream function, vy, is g(r)sin26.
Here 0 is the angle between the position vector and the
imposed field, Ec, cf. Fig. 2. Clearly the velocity is sym-
metric with respect to the planes 6 =0 and n/2. In the re-
gions 0<r<a and a+8<r<woo, the electrical body
force is zero and the equations have analytical solutions;
in the annular ring a <r<a+§ the coupled ordinary
differential equations involve the electrical body force so
the equations for f(r) and g(r) were solved numerically.
In this example, the velocity scales on (n/2u)agyAcE %
and depends only on the dimensionless ratios Ac/G and
6/a. Thus, a solution can be constructed which is in-
dependent of the velocity scale. The solutions in the three
regions were matched to one another by requiring con-
tinuity of current, electric potential, velocity, and stress.
Results were obtained for several values of Ac/G and 6/a
to explore their effects on the velocity field. To see how
the direction of the flow depends on the parameters we
look at the radial component for r>a+6. Here,
g(r)=A+B/r? so the radial component of the velocity
field is

u,=?”;asoAsEZo[A (r/a) "'+ B(r/a) ~*1cos26 (5)

for r=a+56.

The direction of the velocity, scaled on (7/2u)agyAcE 2,
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TABLE I. The constants 4 and B for different parameter
values.

Ac/& é/a A B
0.5 0.1 0.01998 —0.00763
—0.5 0.1 —0.05842 0.02176
0.5 0.5 0.02156 —0.01326
-0.5 0.5 —0.05780 0.03221
0.1 0.1 0.00705 —0.00266
—0.1 0.1 —0.008 57 0.00322
0.0 0.1 <101 <10~

depends on the signs of 4 and B; Table I shows values of
A and B for several values of Ac/c and 6/a.

As expected, the magnitude of the induced velocity in-
creases with the magnitude of the conductivity contrast
and the size of the region over which the electrohydro-
dynamic body force acts. Figure 3 shows streamlines for
the scaled velocity field for a typical situation with
Ao >0 so the ribbon axis is parallel to the imposed field,;
Fig. 4 shows the x component of the velocity. When the
sign of Ao is reversed, the flow reverses direction and
changes magnitude somewhat. However, the structure of
the flow is similar to that shown in Figs. 3 and 4. As the
figures indicate, when Ao > 0, flow stretches the sample
in the direction of the field.

The model presented here reproduces all the qualitative
features of the Rhodes-Snyder-Roberts experiment [1]:
(i) For a sample with Ag> 0, the sense of the deforma-
tion is in the direction of the applied field when Ac > 0;
(i) the deformation reverses when Ao changes sign; and
(iii) the deformation disappears when Ac =0, irrespective
of the magnitudes of & and ¢,. The leaky dielectric mod-
el, Eq. (1), indicates that the sense of the deformation
should be closely tied to the dielectric constant ratio even
when the conductivities are matched, which is at variance
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FIG. 3. Streamline pattern for Ao/5=0.5, 8/a=0.1. Con-
tours are shown for the stream function for the dimensionless
velocity equal to 0.0, 0.004, 0.008, and 0.012. The concentric
circles designate boundaries of the transition region.

with the experimental results.

To estimate an order of magnitude for the velocity us-
ing the present theory, we choose representative values of
the parameters. DelLacey and White [7] developed a
theory to predict the dielectric constant of a dilute sus-
pension. We use their results to estimate Ae=20 in a
0.5% suspension of particles with a £ potential of 100 mV
in a 20 mM salt solution at 100 kHz. Note that this
value is probably low since experimental results [3] give
dielectric increments due to the presence of particles that
are often more than an order of magnitude larger. Using
the DeLacey-White value gives a characteristic velocity,
agyAeEL/u, slightly larger than 350 pm/s with a field
strength of 10 V/cm and a sample radius of 0.5 mm.
Then using the results for Ao/ =0.5 (Table I) gives a
sample deformation rate of approximately 5 um/s, in
agreement with the results found by Rhodes, Snyder, and
Roberts [1]. Predictions made with the new model are
also in qualitative accord with the results of electro-
phoresis experiments using particulate samples in steady
fields [5].

Another consequence of the theory is the insight
offered into dispersion mechanisms in protein electro-
phoresis. Protein samples are often analyzed in a gel (gel
electrophoresis) or capillary tube (capillary electro-
phoresis). In these methodologies, a fluid bolus contain-
ing the protein is immersed in a buffer solution and ex-
posed to an electric field. Separation is based on the fact
that protein molecules migrate at rates determined by
their respective electrophoretic mobilities. To see if some
of the dispersion observed in such techniques might be
due to electrohydrodynamic effects we calculate a
representative order of magnitude. Although the dielec-
tric constant difference between sample and buffer is
small compared to those found with particulate samples,
field strengths may be several hundred volts per centime-
ter. From data given in Tanford’s treatise [8], we esti-
mate Ag to be 0.3 for a 0.1% solution of hemoglobin in
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FIG. 4. Dimensionless velocity component (scaled on
nagoAeEZ/2u) in the field direction at the inner edge of the
conductivity-dielectric constant transition, x =a (see Fig. 2) for
Ao/3=0.5,8/a=0.1.
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water. For a field strength of 100 V/cm and a sample
size of 0.5 mm, the characteristic velocity, agAsE2, is
over 100 um/s. Scaling this value using the ‘“‘constants”
derived for the circular sample (Table I) indicates a
dispersion velocity of nearly 1 um/s, of the same order of
magnitude as the electrophoretic velocity. It should be
recognized, however, that the geometric configurations
used in protein electrophoresis differ from those on which
the numerical constants are derived. Nevertheless, based
on this calculation, it appears that electrohydrodynamic
dispersion may be an important factor in protein electro-
phoresis.

This work was supported in part by the NASA Micro-
gravity Science and Applications Division under Grant
NAG3-259.

2910

[1] P. H. Rhodes, R. S. Snyder, and G. O. Roberts, J. Colloid
Interface Sci. 129, 78 (1989).

[2] G. 1. Taylor, Proc. R. Soc. London A 291, 159 (1966).

[3]1 D. F. Myers and D. A. Saville, J. Colloid Interface Sci.
131, 461 (1989); 131, 470 (1989); L. A. Rosen and D. A.
Saville, Langmuir 7, 36 (1991).

[4]1 P. H. Rhodes and R. S. Snyder (personal communica-
tion).

[5]1 P. H. Rhodes and R. S. Snyder, Electrophoresis 7, 113
(1986).

[6] L. D. Landau and E. M. Lifshitz, Electrodynamics of
Continuous Media (Pergamon, New York, 1960).

[7) E. H. DeLacey and L. R. White, J. Chem. Soc. Faraday
Trans. 77, 2007 (1981).

[8] C. Tanford, Physical Chemistry of Macromolecules (Wi-
ley, New York, 1961).



