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Growth Rate of the Richtmyer-Meshkov Instability at Shocked Interfaces
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%e have found several cases in our numerical simulations where Richtmyer s prescription fails to give
the correct growth rate for the Richtmyer-Meshkov instability in the linear regime. Another expression,
due to Fraley [Phys. Fluids 29, 376 (1986)l, agrees with our simulations. We discuss recent experiments
and report two new types of perturbation freeze-out, single-shock and double-interface, which are quite
distinct from the previously reported double-shock freeze-out.

PACS numbers: 47.40.NI, 47.20.Ma, S2.3S.Py

The Richtmyer-Meshkov (RM) instability [1,2] refers
to the growth of perturbations at a shocked interface.
Recently RM instabilities have been the subject of
intense theoretical, computational, and experimental
research because of their importance in inertial-con-
finement-fusion implosions as well as supernova explo-
sions [3]. They are a general feature of shocked inter-
faces and occur for shocks moving from a low to a high
density fluid or vice versa.

Starting with Meshkov [2], experimental results have
been compared with Richtmyer's expression [Eq. (1)
below] for the growth rate of the instability in the linear
regime. There is qualitative agreement, but quantitative-
ly the experimental growth rates are smaller, sometimes
by a factor —2. Numerical simulations, on the other
hand, have so far agreed with Richtmyer, the first simula-
tions being reported by Meyer and Blewett [4]. More so-
phisticated code calculations can be found in Ref. [3],
with the result that in the linear regime the normalized
growth rate (RNo) of the instability is [I]

RNQ = AeA 1 A after ~

go~vk

In the above equation ri(r) is the amplitude of the per-
turbation (r is time), rto is its initial value, Av is the jump
velocity imparted by the shock, k =2tr/k with X the wave-

length of the perturbation, 8'. is the speed of the incident
shock wave, and A,ft„ is the Atwood number of the fluids
after the shock. The factor 1

—Av/Wi in Eq. (1) is the
compression factor relating gart„ to gp, where ga«er is the
amplitude immediately after the shock, i.e. , q, ft ( I
—hv/Wi)rio [see Eq. (50) in Ref. [1]]. In the incom-
pressible limit the compression factor 1 and Aaft, „

fp, the Atwood number before the shock,

p8 pa R —
1

+bcforc = =, R =pB/pA,
p~+ p~ R+ 1

(2)

where p~ and p~ are the densities of the fluids before the
shock. Our convention is that the shock is initiated in

fluid A and proceeds towards fluid B. Richtmyer first de-
rived the incompressible result, A,p=Ab, t-„„by treating
the shock as an instantaneous acceleration. After a num-
ber of calculations with the linearized (meaning tlk (( I)
but otherwise fully compressible perturbation equations,

he gave Eq. (1) as a prescription for the growth rate at-
tained by the perturbations after a brief transient period.
The fact that rj is a constant in time leads directly to per-
turbations growing linearly in time,

q(r ) = go[I +~vkW r ], (3)

where A =Ah fp„ in the incompressible limit and, more
generally, Aep for compressible fluids.

In the majority of our simulations, including weak as
well as strong shocks, we found Eq. (1) to be a good
prescription for tj, following earlier findings [3,4]. How-
ever, we also found a number of cases, again including
weak as well as strong shocks, where Eq. (1) failed. Be-
fore we elaborate on those cases we emphasize two points:
First, the failure is not associated with the linear
approxI'rnatI'. on—we took extremely small amplitudes.
Second, none of those cases involve experiments that
have already been performed In fact. , when we analyzed
the experiments of Meshkov [2] and the more recent ex-
periments of Benjamin [5] (see below), we found ex-
tremely good agreement with Eq. (1). New experiments
will have to be done to see the failure of Richtmyer's
prescription.

The most conspicuous case involved A,ft„=0 which,
according to Eq. (1), should have led to tj =0, i.e. ,
freeze-out of the perturbation by a single shock (to
diferentiate from double-shock freeze-out expected to
occur in compressible as well as incompressible fluids, as
reported previously [6].) We found cases where A.,ftc 0
yet re&0. We started with compressible fluids A and B,
p~ & p~, so that Ab, f,„,& 0. The incoming shock was
tuned to give A, ft,„=0. However, we found j & 0, in
direct violation of Eq. (I ).

The strong shocks require solving a transcendental
equation to arrive at postshock quantities like Aa«„, etc.
(details can be found in Ref. [7]). Here we concentrate
on weak shocks because explicit expressions can be ob-
tained for j. Defining the overpressure ratio e = (p3

po)/p3 we keep only terms linear in e. Here p3 (po)
refers to the pressure behind (ahead) of the incident
shock whose Mach number is usually denoted by M„re-
lated to e via M, =I+e(y~+ l)[2y~(1 —e)] '. We as-
sume ideal equations of state and y~ ~ stand for the con-
stant adiabatic indices of fluids A and B.
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To first order in e we find

and

28
yg(I+y) ' (4a)
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where

(4b)

y = Cpa—y8/pA YA GRAB/YA (4c)

R R-
F(R,y) = 2 1

—R+2
y(R+ I )

x (R+ I ) '(y+ I ) (6)

Perhaps most interesting is the case Ab, f„,=0 where
the fluids diA'er only by virtue of their different y s, not
densities. Then R =1 and

(y —I)/y, y= Jrn/X~. (7)
fA

However, when we ran a test problem with c=0.4,
y~ =1.1, y8 =4.4 (y =2), we found r'1=0, in contrast to
Eq. (7), according to which RNo =A,a. = —0.18; i.e. , per-
turbations should have grown after a phase change. We
emphasize that the compression of the perturbation as
well as the Atwood number after the shock were correctly
given by Eqs. (4a) and (4b). Only their product failed
to give the correct growth rate, violating Richtmyer's
prescription.

These and other failures led us to consider an analysis
by Fraley [8] who, to first order in s, gave an expression
similar to Eq. (5). His function F, however, differs from
Eq. (6) and is

A,g =0—

R2+ 2

F(R,y) = (y —I) +4 —2R —2yy(R+ I )

x (R+ I ) '(y+ I )

[We have corrected a misprint in Fraley's Eq. (49)l. For
the case under consideration we set R =1 so Eq. (8) gi~es

A.a =0 — '
(y —1)(1—0 5y)/y, y = JX8/r~, -

fA
(9)

to be compared with Eq. (7). The extra factor 1
—0.5y

successfully explains the lack of growth for y =2 reported
above.
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Equation (4a) shows that the compression factor ( I as
expected; Eq. (4b) shows that, to first order in

~a«er ~before if y~ =
yB~ and that +after ) o" + ~before

depending on whether y~ ) or & y8. The latter are the
interesting cases.

Combining Eqs. (4) and (I) we obtain

Aeff Abefore+~F/1'A ~

where

In general, Eq. (8) explains well the behavior of per-
turbations in weak shocks. While j for strong shocks
cannot be given in closed form, Fraley also gave a
fourth-order expression, too complicated to be reproduced
here, which we found to agree well with our simulations.
We also explain (see Ref. [7] for details) why earlier ex-
periments, including some strong shock calculations by
Richtmyer, did not show deviations from Eq. (1). We
must emphasize that Richtmyer gave his last equation,
Eq. (72), as a simple "recipe" or prescription that cap-
tures the eAects of compressibility. He had found these
eAects by solving several examples using a code based on

his linearized but fully compressible hydrodynamic equa-
tions. The same equations form the starting point for
Fraley who, instead of solving them numerically, used

Laplace transforms to derive analytic expressions.
Richtmyer s prescription is most attractive to our physi-
cal intuition (there is none of it in Fraley s work) and for
that reason Eq. (1) has been taken almost for granted.
Just as exceptions often prove the rule, it is remarkable
that Eq. (I) does so well in the majority of cases, not-
withstanding the few exceptions we have found.

Fraley's analysis has a wider range of validity than
Richtmyer's prescription. Where they overlap our nu-

merical simulations also agree. Typically, but not ex-
clusively, those problems involve large Atwood numbers
and large yz and y8. Where they disagree, our numeri-
cal simulations side with Fraley. Typically, but again not
exclusively, those problems involve freeze-out: We do not
find the freeze-out expected by Richtmyer (of course he
never considered such cases), and conversely we do find it
where it is not expected. By siding with Fraley our hy-
drocode calculations point to the correctness of his

analysis and, through it, the correctness of Richtmyer's
linearized equations which formed the basis of that
analysis. Only Richtmyer's last equation, in the form of
a prescription given to circumvent the difficulties of an

analytic solution, fails our tests involving freeze-out.
A variant of that prescription was proposed by Meyer

and Blewett [4] for the case where a rarefaction, instead
of a shock, is reflected from the interface. Their
modification, based on numerical simulations of experi-
ments by Meshkov, was to use the average of the initial
and the final amplitudes. We found this to be a good
prescription for many such problems. But again we

found cases where this prescription failed, and again they
involved freeze-out. Clearly, when A,, «„=0, which can
be arranged when either a shock or a rarefaction is

reflected, one expects j=0 whether one uses the original
(t1 tlafrerA after) Or the modified [tl p (tlbefore+ tlafrer)
x A ~ fi „] prescription. However, we found [7] examples
involving rarefactions where A,«„=0, yet j&0.

Experiments. —We focus on Benjamin's air/SF6 exper-
iment [5] (we found similar results in Meshkov s experi-
ments). Taking p~ =1.22 mg/cm, p8 =6.20 mg/cm',
y~ =1.40, y8 =1.09 (A =air, 8 =SF6), and &=0.39
(hence M, =1.24), we find Abet«e =0.67, A. fr =0.70,
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FIG. l. t)(r) vs r from 2D simulations of air/SF6 experi-
ments by Benjamin [5]. The lower curve started with the ex-
perimental value t)(0) =0.24 cm; the upper curve is 24 times
t)(r) from an identical run with t)(0) =0.01 cm. From the
slope of the curves between 300 and 600 ps we deduce that the
RNo is 0.37 (0.54) for the lower (upper) curve. The interface is
reshocked at z -600 ps—see Fig. 2.

compression factor =0.81, and therefore A,~, which gives
the R~o, is 0.57 (=0.81 &&0.70) according to Richtmyer's
prescription and 0.58 according to Fraley's analysis,
surprisingly close. Note that ~ aftgp + + befpp but the
compression factor in Richtmyer's prescription more than
compensates for the slight increase in Atwood number
(the same happens in some of Meshkov's experiments).
Of course both answers are below the incompressible re-
sult RNG' "=Ab, f„,=0.67. We carried out a numerical
simulation of this experiment first with a small arnpti-
tude, go=0.01 cm, obtaining RNG=0. 54, and second
with a larger amplitude, t)o=0.24 cm (the actual experi-
mental value) obtaining R~G =0.37. The time evolution
of the perturbations is shown in Fig. 1, from which the
normalized growth rates can be obtained using the above
mentioned values of t)o, k =2m/X =2'/3. 75 cm ', and
Av =8. 1 cm/ms.

The reduction from 0.54 to 0.37 is the result of non-
linearity with the larger initial amplitude. In Benjamin's
experiments RNg' was —0.24, suggesting that the mem-
brane had some residual eA'ect, which is expected. In
summary, compression reduces RNg from 0.67 to 0.58;
further reduction to 0.37, from our code simulations, is
ascribed to the nonlinearity of the experimental ampli-
tude. Finally, the membrane, whose eA'ect we cannot
simulate, is probably the third and last cause for further
reduction to RNg —0.24.

Snapshots from our simulations are shown in Fig. 2 for
go=0.24 cm. In the last frame the reflected shock has
returned to reshock the air/SF6 interface. Snapshots
after reshock are shown in Fig. 3, revealing highly non-
linear phenomena. The small-amplitude run, not shown
here, evolved into a weakly non linear regime after

FIG. 2. Snapshots from 2D simulations of air/SF6 experi-
ments (see text). The test section is 7.5 cm wide and 7.5 cm
high. At z =200 ps we see the interface and the transmitted
shock which reflects ofl the lower wall at z —400 ps and
reshocks the interface at z-600 ps. Snapshots after reshock
are shown in Fig. 3.
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FIG. 3. Snapshots after reshock.

reshock.
Finite-thickness layers. —RM experiments without a

membrane were recently reported [9). However, the per-
turbation amplitudes were even larger than the previous
experiments (t)o/X —0.06 and —1 in Refs. [5) and [9], re-
spectively). Here we are interested in another feature,
the finite thickness of the SF6 layer, which precludes any
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comparison with Richtmyer or Fraley even in the linear
regime because their formulas apply only to the "classi-
cal" configuration of two semi-infinite fluids. For a
finite-thickness layer one finds interface coupling whereby
the evolution of the perturbation at one interface depends
on the other [6].

%e first introduce a "coupling angle" 0 which vanishes
in the classical limit (infinite thickness) and approaches
tr/2 in the opposite limit. Letting t stand for the thickness
of the intermediate layer 8 in the A/8/A configuration
(A =air, 8 =SF6 in the experiments), we define

sine =2c/(I+c'), (i 0)

where

g, (r ) =q, (0)+ '
[q, (O) —sineq, (0)]r,

cosO

hvt
t7 (r ) =g (0) — [tl (0) —sin8tl, (0)jr,

cosO

where

I —= k (R —1)/[1+R + 2R coth(kt)] '

(i2a)

(i2b)

Our convention is that gt (rt2) is the first (second) inter-
face perturbation to be shocked; i.e., interface 1 is the
upstream side of the layer and interface 2 is its down-
stream side. In the limit kt ~, I kA and Eqs.
(12a) and (12b) reduce to tI;(r ) = tl;(0) [I ~ t5.vkAr ]
with the + ( —) sign associated with i =1 (2), as expect-
ed.

Equations (10)-(13) are valid for incompressible
fluids, arbitrary thickness t, and, as with all formulas in

this paper, for small perturbations only. The correspond-
ing finite-thickness compressible problem may well be in-
tractable analytically, given the complexities of the classi-
cal configuration, as discussed above. Alternatively, one
may carry out numerical simulations which include
compressibility and nonlinearity. For lack of space our
simulations will be reported elsewhere.

The point we wish to make is that because the SF6 lay-
er in the experiments was relatively thin and, more im-
portantly, the perturbations were nonlinear to start with,

c =1+ST+—[1+[1+R +2Rcoth(kt)] ' ] . (l l)S
R

Here 5—:sinh(kt) and T—:tanh(kt/2), and R =ptt/pg as
before. For any value of R (one may even consider
R(1), we find that sin19 0 in the classical limit as
kt ~, and sin0 1 as kt 0, i.e., the strong coupling
limit. In the experiments [9] kt =3 and R=5, so we
find sin0 =0.1, indicating weak coupling.

In terms of 0 the evolution of the perturbation at each
interface is given by an exceptionally simple form (this
was our reason for introducing 0):

we cannot use the classical expression, Eq. (3), to infer
growth rates. On the other hand, the experiments did
have the great advantage of using no membranes. There
have been other membraneless experiments [10], but this
time a continuous density gradient at the interface,
though interesting by itself, spoils the comparison with
classical formulas. It is somewhat ironic that after so
much work the classical RM experiment (two semi-
infinite fluids, no membrane, small-amplitude perturba-
tion) remains to be done. As we discussed above, even
the theory is quite challenging, as evidenced by Fraley's
analysis. Few people, including us, expected so much
complexity for an apparently "simple, linear" problem.

This is not to say that finite-thickness experiments,
even in the linear regime, are not interesting. Our final
remark concerns Eq. (12): If the initial conditions are
such that ri~(0)/rt2(0) =sin0 then tli(r) =pl(0). In oth-
er words rji =0 and the perturbation at the first interface
freezes-out. To freeze gz one must arrange t12(0)/
t)~(0) =sin19. We label this phenomenon double interfa-ce
freeze out becau-se a second interface is necessary here to
influence the first interface. Like double-shock freeze-
out, but quite unlike single-shock freeze-out, we find that
double-interface freeze-out occurs for incompressible as
well as compressible fluids. Examples will be given else-
where.
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