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Probing Quantal Dynamics of Mixed Phase Space Systems with Noise
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We study how weak broadband noise affects 30.36 GHz 10%-"ionization" thresholds F(10%) (that
produce "ionization" probability P;,„=10%)of no=54, . . . , 72 H atoms. Calculations confirm that in-
creased noise lowers F(10%) for most no's, raises some, but affects others little. We show noise to be a
useful spectroscopic tool for uncovering novel quantal phenomena such as scarred states, which we link
semiclassically to approximately adiabatic evolution near the separatrix of a nonlinear resonance island.
Our results apply generally to the quantal behavior of classical mixed phase space systems.

PAt S numbers: 05.45.+b, 03.65.Sq, 32.80.Rm

Classical Hamiltonian dynamics in regions of phase
space containing both regular and irregular motion is
complicated [1]. Lack of a general theory limits our un-
derstanding of the quantal/classical correspondence [2-4]
of these mixed systems, thereby directing attention to
particular systems. For regular systems conventional
semiclassical methods may be used [4-6]; for hyperbolic
systems trace formulas with unstable periodic orbits (PO)
are used to find semiclassical energy level densities [4,7].

Because quantal calculations on mixed systems, which
are ubiquitous, are diScult and especially challenging if
the continuum is involved, the few extant low-dimen-
sional systems on which experiments and both classical
and quantal calculations can be performed are particular-
ly important: Three examples are (i) the quadratic Zee-
man effect of H atoms [8], (ii) doubly excited He atoms
[9], and (iii) periodically driven H atoms [10-14].

A generic structure in mixed systems is the resonance
island where regular and irregular motions meet and
coexist: A stable PO is surrounded by invariant curves,
themselves surrounded by stable and unstable manifolds;
such structures exist at all scales.

When island structures manifest themselves in the
quantal dynamics, semiclassical approximations are most
enlightening. For a system of N freedoms, an island of
volume V»h, h being Planck's constant, contains many
quantal states almost entirely within it, and classical and
quantal dynamics will be locally similar. If V~ h, no
states will live inside the island, but some orbits can be
trapped inside it, so classical and quantal dynamics
should be qualitatively diAerent. Surrounding an island
are stable and unstable manifolds associated with unsta-
ble PO. Though of zero measure in a representative en-
semble of classical orbits, unstable POs play a key role in

quantal dynamics; anchored to them are scarred wave
functions (for short, scars) having an enhanced density
where the classical dynamics is 1east stable. Though most
studied for billiards [15], scars have been found in calcu-
lations on both autonomous systems: H atoms in a strong
magnetic field [16] and doubly excited He atoms [9], and
time-dependent systems; the kicked rotor [17] and the

periodically driven ID H atom [18].
Scars are important: Emphasizing regions of phase

space where classical distributions are statistical, scars
produce important local diAerences in systems having
large actions I»A. In real systems a high density of
states hinders preparation of a particular scarred state
because the energy resolution requires long times [19].
We stress that no experimentally realizable system can be
totally isolated from its environment (hereafter abbrevi-
ated as "noise"). With a high density of states, noise-
induced eA'ects become important on a time scale that de-
creases as the noise level increases [20,21]. In particular,
because noise destroys unstable PO, we expect that quan-
tal physical phenomena linked to them will be aAected.
A consequence will be that as noise increases, scars will
cause smaller departures from classical behavior.

In this Letter we test our expectations with experimen-
tal and theoretical results on a real system, an excited H
atom driven by a harmonic electric field with added noise
[22], both linearly polarized. For a range of applied fre-
quencies co and field amplitudes F„, the noise-free classi-
cal system has mixed character, and important manifes-
tations of scars have been identified in calculations
[12,18] and experimental data [23]. The system is time
dependent with two freedoms, but it is known [13,24, 25]
to be approximated we11 for F„near the onset of "ioniza-
tion" by a time-dependent, one-freedom system.

Our apparatus has been described previously [23,24,
26,27], so we emphasize only important details. A 14.6
keV beam of H atoms, initially in a uniform distribution
of substates with a given principal quantum number no E
[54,72] prepared by laser excitation, traversed a section
of Ka band, TE~O-mode Cu waveguide, entering and exit-
ing through 0.53 mm diam holes centered in each short
side wall. A low-noise synthesized source (Gigatronics
model 900) was amplified (Miteq model AFD4-080180-
2P) and frequency doubled (Honeywell model A2000N).
Its amplified [Hughes model 1077H12FOO, 24-40 6Hz,
1-W traveling-wave-tube amplifier (TWTA)] output
passed through a vacuum window, crossed the atomic
beam, and was absorbed in a well-matched waveguide
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FIG. 1. Measured 10% ionization thresholds vs no, for four
different rms amplitudes of 26-40 GHz shot noise added to a
30.36 GHz field. Straight lines join data points.

load. In a separate experiment in our apparatus we used
Stueckelberg oscillations in He Rydberg atoms [26] to
calibrate the 30.36 6Hz amplitude F„to 1%.

This frequency is the same one used previously [23],
but note how the experiments diAer: (i) (somewhat im-

portant) the present (previous) pulse shape is a half sine
wave (three-lobes, with the middle lobe) lasting 129
(182) field oscillations; (ii) (very important) the present
(previous) waveguide (high-Q cavity) interaction region
was used to support (act as few MHz wide filter and

suppress) the broadband noise spectrum of the TWTA
(flat within 10 dB over 26.5-40 GHz). We assume it was
predominantly shot noise (equal quantities of amplitude
and phase noise). We used a broadband, variable at-
tenuator after the TWTA to decrease the rms noise am-

plitude F„and still vary F„, up to a limit set by TWTA
saturation. For each no we used the proton quench
method to measure P;,„as a function of F„, for each of
four different F„values; "ionization" means true ioniza-
tion plus excitation above an n cutoff, n, =89 [27].

The 10% thresholds F(10%) in Fig. I show the eA'ect of
noise to be neither uniform nor systematic as no varies:
(i) At the lower two F„values the F(10%) for each np are
usually close, except especially for np=55 and 56. (ii)
Increased noise usually decreases F(10%) (increases
P;,„) (iii) That th. e counterexamples to (ii), np =57 and

65, occur at local minima in F(10%) suggests a qualita-
tive explanation. At such a minimum the (atom+field)
wave function must be dominated by relatively unstable
Floquet states, so (weak) noise can only mix in nearby
more stable states. (iv) In one case, np=64 (see also
np =68), noise has little influence. This suggests either
that noise-induced coupling to other Floquet states is

weak here or that whatever Floquet state(s) are mixed in

become unstable against ionization near F„=15V/cm.
The (i)-(iv) behavior is in stark contrast with that

measured [21] for Rb Rydberg atoms with ratios of
F„/F„comparable to those we used for H. For all Rb
data shown in Fig. I of [21], F(10%) systematically de-

FIG. 2. Comparisons of scaled 10% thresholds vs scaled fre-
quency n$cu= Qp f—or twp different rms noise amplitudes. Expt:
Measurements with 3D atoms, no=54, . . . , 72; 3d cl: 3D clas-
sical Monte Carlo calculations; 1d qu: 1D quantal calculations
neglecting the continuum. Straight lines join data points.

creases as F„ increases.
We focus now on H(np=66). A previous low-noise

30.36 GHz experiment [23] found it to be an example of
nonclassical local stability (non-CLS) that scales classi-
cally, being associated with the scaled frequency
=1.3. In Fig. 1 the local stability of no=66 stands out
for F„=0.5 and 0.8 V/cm but is almost completely des-

troyed when F„~ 1.4 V/cm. In a 1D model of the driven

atom, the non-CLS was identified numerically with a re-

gion of phase space near an unstable PO [12,18]. Our
data are consistent with this identification, showing what-
ever stabilizes this state is sensitive to noise, as would be
expected for an unstable PO. Why noise similarly affects
no =55 and 56 will be explained below.

Henceforth we use atomic units with the scaled ampli-
tude npF and frequency Ap =naacp —[28]. Figure 2 com-

pares F(10%) data with 3D classical Monte Carlo calcu-
lations (3D MC), which used the method described in

[27], but now with added noise modeled as random tele-

graph phase noise [29]. The Hamiltonian (see [14]) is

P(t) =p /2 —1/r+(F /cp)p, A(t)sin[cpt+p(t)], where
A(t) is the experimental pulse shape, and w(t) jumps be-
tween a certain + hp at random times tk, with tk+] —tk

exponentially distributed with a mean X . After deter-
mining for the experimental A(t) that the results were
insensitive to quite large changes in X, we chose it to be
4tc/cu. In this model F„=F J2 sinks.

For F„=0.5 V/cm (Ap/tc between 0.005 and 0.01),
Fig. 2 shows agreement within combined experimental
and 3D MC statistical errors in only 4 of 19 cases;
significant differences are at no =55, 56, 63, 66, 67, and
70-72. Separate 3D MC for F„=O, not shown here,
were generally indistinguishable from the present 3D MC
with F„=0.5 V/cm.

For F„=2.2 V/cm (Ap/tc between 0.025 and 0.055),
Fig. 2 shows excellent agreement in 14 out of 19 cases:
Qo between 0.72 and 1.15 and between 1.45 and 1.58.
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FIG. 3. 1D quantal calculations that included the continu-
um, for no=66 in a microwave (peak amplitude noF =0.05)
and static fields (F, =8 V/cm) with added random telegraph
phase noise having the indicated fixed phase jumps. Straight
lines join points in each set.

Between 1.21 and 1.39 and between 1.65 and 1.72, the
diA'erences are similar to but smaller than those for F„
=0.5 V/cm.

Dramatically opposite to no =66 (and 55,56) is no =57,
where noise increases F(10%). Figure 2 (inset) compares
3D atom data for n0=56-58 with 1D numerical inte-
grations of the Schrodinger equation in the dipole
gauge, with the field modeled as A(t) [F sinrot+ [F„/
(QP-iaf, ) ' ]QP-iaf, sin(2zvf t+pk)J. Defining ioniza-
tion as excitation to n ~ 90 in the n E [50,170] basis of
zero-field states, we took experimental values for co, F„,
and A(t) and a&, pk, and vf, to be uniformly distributed
on [0,1], [0,2fr], and [22,40] 6Hz, respectively. Aver-
aged over five independent noise realizations, the calcula-
tions reproduce the measured behavior very well.

We also included the continuum in 1D quantal calcula-
tions, using semiclassical methods [14] and a random
phase noise model [29]. (For the present noise levels,
random phase and random amplitude noise models gave
insignificantly different results. ) Because the method adds
a static field term —zF, to iV(t) to "lower the continu-
um" to a saddle n-value n„one should compare the re-
sults only qualitatively to the present experiment, in

which F, =0. Figure 3 shows for no=66, noF=0.05,
F, =8 V/cm (giving n, =95), and X ' =2fr/ru how P;,„
varies with the F,-shifted scaled frequency Qi =Go(1
+3nriF, ) [30] as Ap and, thus, F„ increase. At local
minima P;,„ increases with F„, but most dramatically in a
range around Qi =1.32, just where the present experi-
ment (Go=1.327 for no=66) shows strong noise-induced
destabilization [lowering of F(10%)l Figure 3 . also
shows cases of noise-induced stabilization near local max-
ima in P;,„and other cases where added noise has little
effect [cf. behaviors (iii) and (iv) above].

Though the nonconstant A(t) complicates an analytic
understanding of our results, it varies slowly enough for
adiabatic invariance to give powerful insight into the dy-

namics. A key point is that when P;,„=10%, even the
peak ionization rate is low. Use of a 1D model H atom
will be sufficiently accurate near the onset of ionization
[12,13,24,25].

As is customary near a resonance, we express the
bound-motion Hamiltonian & in unperturbed action-
angle variables (1,9), expand about the resonant action
I„=A ', and transform to a frame rotating at frequen-

cy t) to remove slowly varying terms [1] to give
'If' =P~+ 'iY i. (For the equivalent quantal procedure, see
[31]). The "pendulum" Hamiltonian Pz describes
motion near the resonance, see [32], 'P~ = —3X /2I„
+2X /I, +0.325FA(f)I„cosO, with 1=1,+X. The
small X term is qualitatively unimportant but aA'ects de-
tails discussed below. The Hamiltonian & i contains rela-
tively rapid terms such as exp+'i (0+2 At ) and

exp ~ i [s8+ (s ~ 1)0t], for s ~ 2.
When A(t) =1, &~ has a stable [unstable] fixed point

at (0,0) [(0, ~fr)], corresponding to stable (unstable)
POs in the original representation. The separatrix associ-
ated with the unstable fixed point has energy E,
= —0.325FI„; its area encloses about N, quantal states,

where N, =0 84I„JF„./6, for F„=FI„.The frequency of
motion near the stable fixed point is m& =0.98F» l ~ For
present parameters N, =10 and co& =0.230.

Near the 00=1 resonance the eigenstates of &~ are
the natural quantal basis; without the A term, they are
the even ce2„and odd se2„r =0, 1, . . . , Mathieu func-
tions [33] with argument v =(8+fr)/2.

lf Pi were zero, for A(f) slow enough each initial

state exp(ip8)/J2fr, p = + r, is, because of parity,
transformed adiabatically into linear combinations of the
pair ce2, and se2„ in roughly equal weights. The resonant
state p =0 is an exception: It becomes the ground state
ceo. dA(f)/dt controls the purity of this transformation,
with faster rates tolerated as ~p~ increases; for present
experimental conditions A (f ) is indeed slow. The
nonzero )Y~ mixes these adiabatic states. "Ionization, "
which is due to mixing with states of large n, is compli-
cated because it depends on the size of matrix elements
and time scales. Here we are interested only in the gross
features of the dynamics, which depend on which state(s)
of &~ are populated by the slowly varying A (t ).

To find these states we use classical adiabatic invari-

ance. Rigorously it breaks down because of the potential
barrier at 0= ~ z, but because this aAects only a few or-
bits, the initial and final actions for most orbits in an en-

semble have similar magnitude.
For N, large enough, the highest energy states of i%~,

with E =(m+ 2 )@rod, m =0, 1, . . . , resemble those of
a linear oscillator: They are localized near 0=0, with lit-
tle support outside the separatrix, and because co~ is rela-
tively small these states are only weakly perturbed by &]
so, once populated, require a strong field to be ionized.
This accounts for the broad maximum in Figs. 1 and 2

centered at no =60, 0 o = 1 [34].
Eigen states with energy near E, are peaked near
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0=+ z, where classical motion is slowest. Moreover, re-
sults presented elsewhere [34] show that one of the states
near the separatrix is perturbed less by P~ than are adja-
cent states. Though not obvious from the form of i'Y&,
this local quantal stability is related to the large classical
period near the separatrix and accounts for the local
maximum in Figs. 1 and 2 at no=66, 00=1.3.

A separatrix (scarred) state can be populated by start-
ing the system with A(t) =0 in a rotational state having
quantum numbers X= ~N, /2, i.e. , starting above or
below the resonant state with a classical action about half
the separatrix area. Because &z is asymmetric about
%=0, to create a separatrix state requires starting with
actions I,— asymmetrically placed about I„. Comput-

ing relevant areas gives I, =(I ~—0.419JF„+0.144F„
+ )I„Parity. conservation and quantization mean
that the quantum numbers of those initial states evolving
into scarred states are within an integer of I, ;Ref. —[34]

gives the explicit derivation. Initial actions within
I, ( I ( I,+ will populate (librational) states [34,35]
predominantly in the island interior. For a 30.36 6Hz
field, 1„=60.1; at Fo(10%) =0.0692 for no=66 in Fig. 2,
F, =0.0473. These values give I,+ =65.9 and I, =55.0,
which agree excellently with the data in Fig. 1. A
separatrix (scarred) state is populated from no=66 and
55,56: In Fig. I, at F„=0.5 V/cm, F(10%) for no=56
and 66 are the same in V/cm, and no=55, 56, 66 are all
examples of non-CLS that are particularly sensitive to
noise, which evidently mixes in less stable, nearby states.

The present Letter deals with a particular system, the
H atom driven by a strong microwave field. Experimen-
tal and theoretical results showed the eA'ect of added
noise to be neither uniform nor systematic, but, remark-
ably, it can be used as a spectroscopic tool to aid in un-
covering novel quantal phenomena. We expect our re-
sults will be generally applicable for unraveling the quan-
tal behavior of other mixed phase space Hamiltonian sys-
tems, which are ubiquitous in nature.
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