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Semiclassical Explanation of the Generalized Ramsauer-Townsend Minima
in Electron-Atom Scattering
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The generalized Ramsauer-Townsend minima which occur, at certain scattering angles, in the intensi-
ty of electrons elastically scattered by atoms have been a subject of interest in atomic physics for over
sixty years. While quantum mechanical calculations predict these minima with great accuracy, no clear,
simple, intuitively appealing description of the underlying scattering processes has been given. It is
shown here for the first time that simple semiclassical calculations provide such a description.

PACS nUmbers: 34.80.Bm, 34.80.Dp

It was discovered in the earliest days of electron-atom
scattering that minima in the cross section for elastic
scattering occur at certain electron energies [ll. The
minima which were found at low electron kinetic energies
(-1 eV) for the inert gases were termed the Ramsauer-
Townsend eA'ect [2]. A simple explanation of this eftect
was soon developed, based on a suggestion by Bohr [2].
Bohr suggested that the part of the electron wave that
enters the atom is accelerated by the atomic potential to
an extent that just fits an additional integral number of
electron wavelengths into the atomic diameter (a phase
shift of 2trn) The . scattered part of the wave emerging
from the atom is thus in phase with the spatially adjacent
unscattered part of the wave. This constructive interfer-
ence means that almost no intensity is removed from the
incident beam, and the cross section for elastic scattering
appears to be nearly zero [2,3].

At higher energies (e.g. , 100-1000 eV) minima were
observed at certain scattering angles for the heavier inert
gases and metal vapors [2], but no simple explanation
was apparent. Suggestions were made that these minima,
which in recent years have come to be known as general-
ized Ramsauer-Townsend minima, might be explained if,
at certain electron energies, the scattered electron wave
were dominated by a single partial wave [2]. This idea
may be understood by noting that in the quantum
mechanical treatment the asymptotic form of the scat-
tered wave is [2]
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large part of the problem was that in most cases it was
clear that a number of partial waves were making impor-
tant contributions to the scattering amplitude [2]. Quan-
tum mechanical calculations made this fact quite clear
and were also able to predict the observed angular distri-
butions accurately [2,4,5]. However, in the quantum
mechanical treatment, the sum of amplitudes of the im-
portant partial waves yielded a total scattered wave with
a complexity that defied a simple, intuitively appealing
explanation of the generalized Ramsauer- Townsend mini-
ma [6]. Nevertheless, the single-dominant-partial-wave
idea was passed down over the decades [4,5], largely
unimproved upon, in spite of its obvious shortcomings.

Figure 1 presents a typical example of the generalized
Ramsauer-Townsend minima [6-9]. At the lower kinetic
energies, various minima are observed as a function of
scattering angle in the magnitude of the scattering ampli-

I eikrf (I))

where the scattering amplitude

f(B) = (2ik ) 'g (2n+ 1)[exp(2iq„) —1]P„(coso),

with g„ the partial-wave phase shift of the nth partial
wave and 0 the scattering angle. Thus, the angular varia-
tion of the intensity is proportional to the square of a
spherical harmonic if a single partial wave dominates [2],
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The simple predictions made by this model did not give
a very good fit to the data (see Fig. 5. 14 in Ref. [4]). A

FIG. 1. Plots of (a) the magnitude of the quantum mechani-
cal scattering amplitude, and (b) the phase shift for an electron
plane wave scattered by a Cu atom at the indicated electron ki-
netic energies (from Ref. [7]).
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tude, If(8) I. [Defined as f(8) = If(8) le', where v0(8)
refers to the phase shift of the full wave [7-9]. Note the
distinction that g„, above, is a partial-wave phase shift for
the nth partial-wave basis function. ]

Two important characteristics of this eff'ect are that the
minima have some tendency to be a periodic function of
angle and that the minima fade away at higher electron
kinetic energies. Also noteworthy is that, for a given
electron kinetic energy, the heavier the atom the greater
the number of minima that appear (not illustrated).
These general characteristics can be seen clearly if one
consults the comprehensive numerical tabulations of the
efl'ect found in Refs. [7-9].

Another characteristic of the effect is that as lf(8)l
goes through a minimum, a rather sudden change in the
full-wave phase shift, p(8), of approximately n [6-9],
occurs. Moreover, the more closely the minimum in

lf(8)l approaches zero, the more closely the change in

the phase shift approaches n [7-9]. Any model intending
to explain the generalized Ramsauer- Townsend eAect
s ou eah ld be able to account for these salient characteristics.

delAs we shall see, even a very simple semiclassical mo e
does so.

Figure 2(a) illustrates two families of electron trajec-
tories obtained from a simple, WKB-level semiclassical
calculation [10], using a realistic potential for Cu [11].
These results illustrate the important semiclassical con-
cepts that, first, the closer the electron comes to the nu-
cleus the larger the scattering angle; second, the higher
the electron kinetic energy the closer it must come to the
nucleus to be scattered through a given angle; and, third,
at lower energies and small impact parameters the trajec-

exp(ip&)

tory can loop around the atom, scattering through, as it
were, more than 180 of total deflection. This looping-
around effect becomes very weak for light atoms or at
high electron kinetic energies, for which the largest
scattering angle is near 180' (the Coulomb limit). The
looping around is a consequence of the atomic potential
varying faster than 1/r, as the electron descends through
the screening shells, and Z,g rises. For heavier atoms,
with many electrons screening the nucleus, the looping-
around eAect is more pronounced. As we shall see, this
looping around is the key to understanding all the salient
characteristics of the generalized Ramsauer- Townsend
eAect.

Figure 2(b) illustrates the degree to which a simple,
WKB-level semiclassical calculation [10], using a realis-
tic potential for Cu [11], reproduces the full quantum
mechanical result. While the numerical accuracy is not
extremely high, it is adequate to serve as a basis for a
qualitative description and explanation of the generalized
Ramsauer- Townsend eAect. Moreover, more complex
semiclassical methods incorporating wave-packet spread-
ing are well established [12], and would give the same
qualitative results with increased numerical accuracy.
(Note that a minimum uncertainty wave packet with a
FWHM of 0.5 A and a kinetic energy of 500 eV will
spread only 9% during the time it takes to travel 2.55 A,
a distance corresponding to the diameter of a Cu atom
[13,14].)

The semiclassical lf(8)l in Fig. 2(b) is the sum, over
all trajectories j leading to the same O, of the square root
of the differential scattering cross section,
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FIG. 2. Plots of (a) two families of semiclassical trajectories
for an electron plane wave of the indicated kinetic energy scat-
tered by a Cu atom, and (b) a comparison of the quantum
mechanical (from Ref. [7]) and semiclassical (this work) values
for the magnitude of the scattering amplitude and phase shifts
for a 500 eV electron plane wave scattered by a Cu atom.

are the phase shifts of individual trajectories, and b isJ
the impact parameter. Equation (1) is well established as
the semiclassical analog of the quantum mechanical
lf(8)l [15,16]. The values for lf(8)l and p(8) in Fig.
2(b) were calculated using well-established methods (see
Refs. [15,16]) from families of semiclassical trajectories
[e.g. , Fig. 2(a) illustrates two such families]. [Such a
family provides both the pJ values and the deflection
function, d8/db, as input for Eq. (1).] Equation (1) may
be viewed as relating an areal cross section da =2mb db to
a solid angle dQ =2nsin8d8 [15]. Note three singulari-
ties in the semiclassical lf(8)l not present in the quan-
tum mechanical lf(8)l. The ones at 0' and 180' are
generic due to the sine term in Eq. (1), and the one at
160' (particular to this case) is due to a zero in the
deflection function (a rainbow effect) as the looping
around reaches a maximum. (With decreasing b, the
looping around effect reaches a maximum deflection then
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comes back to 180' for extremely small impact parame-
ters, as it must since the Coulomb limit applies whenever
all the important scattering occurs inside the screening
shells. ) Singularities such as these tend to be smoothed
out when wave-packet spreading is included in a calcula-
tion and so do not appear in the quantum mechanical re-
sult [12,16].

Figure 3 illustrates what the present semiclassical cal-
culations reveal is occurring at the generalized Ram-
sauer- Townsend minima. Two trajectories passing
around opposite sides of the atom and exiting at the same
angle are illustrated in Fig. 3(a). The interference be-
tween these two is illustrated in Fig. 3(b) as a sum of vec-
tors in the complex plane. With increasing scattering an-

gle, the trajectory labeled 1 in Fig. 3(a) experiences an
increase in phase shift, illustrated as the increasing phase
angle from vector a to vector b in Fig. 3(b). Concurrent-
ly, for the same increase in net scattering angle the tra-
jectory labeled 2 in Fig. 3(a) experiences a decrease in

phase shift, illustrated as the decreasing phase angle from
vector c to vector d in Fig. 3(b). This decrease is a result
of the total scattering angle for this looping-around tra-
jectory being less for the larger net scattering angle.
Note in the semiclassical phase shift of Fig. 2(b), where

only a single trajectory is considered, the phase shift rises
roughly linearly even beyond 180' [note this part of the
plot is folded back at the top right corner in Fig. 2(b)].

In Fig. 3(b) it is apparent that, with increasing net
scattering angle, the vectors corresponding to trajectories
1 and 2 are counterrotating, and as they go through a
phase difference of x, their sum both goes through a
minimum and exhibits a sudden change in phase of z
(vectors e to f). This phenomenon is the basis of the gen-
eralized Ramsauer-Townsend minima, and the wide ap-
plicability of these simple principles can be noted by
studying the comprehensive numerical tabulations of the
effect found in Refs. [7-9]. Somewhat similar phenome-
na occur in atom-atom [15], ion-atom [17], and atom-
electron scattering [18], and perhaps in muon-atom
scattering [19].

A typical example of this applicability may be illustrat-
ed using the 100 eV data of Fig. l. In Fig. 1(b) the
phase shift exhibits two sudden changes, each of almost
x, at just the angles for which minima occur in If(0)I,

b) e=4s C) e=80.

74' and 144'. Figure 4 illustrates how this effect may be
explained qualitatively [20], using the concepts of Fig. 3,
for six key values of 0. It may be easiest to start by con-
sidering Fig. 4(c), which at 8=80' is just beyond the 74
minimum in If(0) I. Note first that if the initial slope
(which should be dominated by a type 1 trajectory) in

Fig. 1(b) is extrapolated (dashed line) to 74', a phase
shift of —1.6n is predicted for the type 1 trajectory. This
value suggests that the looping-around (type 2) trajectory
(which must be tr out of phase to create the minimum)
will have a phase shift of -0.6z+2xn, where n is an in-

teger. These vectors are plotted in Fig. 4(c). The fact
that the change in the phase shift near 74' is somewhat
less than tr consistent with the fact that If(0)I [in Fig.
1(a)] does not go exactly to zero. This simply means the
two vectors are somewhat unequal in length. Continuing
to larger scattering angle in Fig. 1(b), little change is

seen in the phase shift as If(8) I goes through a maximum
around 106 . This constructive interference effect, illus-

trated in Fig. 4(d), is simply a consequence of the vectors
continuing to precess at a similar rate in a counterrotat-
ing sense. The similar rate indicates that, as in the semi-
classical phase shift of Fig. 2(b), the phase shift rises

roughly linearly even beyond 180 as the trajectories loop
around the atom. As the vectors continue their counter-
rotation at this rate, they interfere destructively near
144' [see Fig. 4(e)], and here the phase shift again
changes by nearly n. Finally, at 180 the vectors add
constructively, as they must, since in the limit at 180
there is no difference between the two types of trajec-
tories [see Fig. 4(f)]. Figures 4(a) and 4(b) can be un-

derstood by working backwards from 4(c) using the
above arguments. The slight dip in

If(8) I around
t)=30' in Fig. 1(a) suggests that the type 2 trajectory is

starting to contribute (—out of phase), and this effect is

represented in Fig. 4(a).
Note how this description makes the connection be-

tween a roughly linear relationship between phase shift
and scattering angle for the semiclassical trajectories and
the roughly periodic constructive-destructive behavior
(as a function of scattering angle) in the generalized
Ramsauer- Townsend effect. This approximate periodici-

b) Im[f(e )]

Re[f(e) I 14s' f) 0=17s

where a+ c = e
and b+d=f

FIG. 3. Illustrations of (a) the two basic types of trajectories
needed to explain the generalized Ramsauer-Townsend minima,
and (b) how the interference between them can be represented
as the sum of two vectors in the complex plane,

FIG. 4. An explanation of the 100 eV data of Figs. 1(a) and
1(b) in terms of the model illustrated in Fig. 3.
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ty in scattering angle is one of the most striking charac-
teristics that one observes in studying the comprehensive
numerical tabulations of the eA'ect found in Refs. [7-9].
It is particularly noticeable for the heavier atoms at elec-
tron energies of a few hundred eV where as many as four
periodic minima [and their attendant changes in p(0) of
—tr] can be observed (e.g. , Au at 500 eV).

Note that at the higher energies the semiclassical mod-
el also explains the gradual disappearance of the en-
hances backscattering around 180' [e.g. , from 500 to
1000 eV in Fig. 1(a)]. When the looping around ceases,
a constructive interference between two trajectories is no

longer possible.
An interesting example of the absence of generalized

Ramsauer-Townsend minima is found in positron-atom
scattering in which the strongly repulsive potential cannot
induce looping-around trajectories. A very instructive
comparison of

~f(8)
~

plots for electron and positron
scattering from Cu at 100 eV may be found in Fig. 1 of
Ref. [21].

In summary, the salient features of the generalized
Ramsauer-Townsend efI'ect for electron energies of a few
hundred eV or more are readily accounted for by a very
simple semiclassical description. The only regime in

which this interpretation seems to fail is that of low elec-
tron kinetic energies, where a semiclassical description is

not expected to be valid, due to rapid spreading of small
wave packets, and indeed at low energies minima periodic
in angle and sudden changes in phase shift of —x are not
generally observed. The description appears to be valid
for heavy atoms such as Au at electron kinetic energies as
low as 250 eV, and for lighter atoms such as Cu at elec-
tron energies as low as 100 eV. While a WKB-level
treatment is excellent for illustrating the basic principles
of this eAect, it cannot be expected to simulate experi-
mental data with great numerica1 accuracy. For that, im-

provements such as wave-packet spreading would be
needed [12]. However, if numerical accuracy, rather
than understanding, is the goal then a full quantum
mechanical treatment is best.

It is interesting to reAect on the reasons why it took so
long for this simple, clear, and intuitively appealing ex-
planation of a familiar problem in physics to be recog-
nized. The data, and the semiclassical concepts needed to
understand it, have been well known to the physics com-
munity for over sixty years. One can only conclude that
it was a preoccupation with the partial-wave basis set of
the quantum mechanical treatment which delayed the
recognition of the present understanding for so long. It is
commonplace that, in problems of physics, the choice of
basis set can be the key to understanding. In the present
case, families of semiclassical trajectories constitute the
most informative basis set. This result illustrates the
great value of semiclassical models in providing insights
which, in quantum mechanical models, may be hopelessly
obscured or lost in complexity.
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