VOLUME 71, NUMBER 18

PHYSICAL REVIEW LETTERS

1 NOVEMBER 1993

Probability Distribution of Excitations to the Electronic Continuum of HeT *
Following the S Decay of the T, Molecule

P. Froelich,! B. Jeziorski,? W. Kolos,?> H. Monkhorst,? A. Saenz,* and K. Szalewicz’

'Department of Quantum Chemistry, Uppsala University, Box 518, S-75120 Uppsala, Sweden
2Department of Chemistry, University of Warsaw, Pasteura I, Warsaw, 02 093, Poland
3Quantum Theory Project, University of Florida, Gainesville, Florida 32611
‘Fakultit fiir Chemie, Universitit Konstanz, D-W-7750 Konstanz, Germany
SPhysics and Astronomy Department, University of Delaware, Newark, Delaware 19716
(Received 6 July 1993)

We present a calculation of the probability density for the excitation to the molecular continuum of
HeT™* following the B decay of T, pertinent to the investigation of chemical effects in the neutrino mass
experiments. The relevant transition amplitude has been obtained by means of a novel technique that
avoids the explicit calculation of the continuum states of HeT™, and delivers the properly normalized
probability density which includes both the background and resonant scattering contributions. We
found two distinct sharp resonances at 75 eV below the end point of 8 spectrum where excess count rate

has been observed in the recent neutrino mass experiment.

PACS numbers: 31.90.+s, 14.60.Gh, 23.40.—s

The present study of the continuous spectrum of HeT*
is related to our previous work [1-7] on the chemical
effects in the neutrino mass experiments [8-10]. In such
experiments the spectrum of § electrons from tritium nu-
clei bound in T, molecules is investigated. Since the de-
cay energy of the free tritium nucleus is shared only be-
tween the B electron, the daughter nucleus *He, and the
neutrino, the B spectrum carries the information about
the rest mass of the neutrino. However, the pure (i.e.,
bare-nuclei) B spectrum is deformed under experimental
conditions by the environmental effects, since the decay-
ing nucleus is a part of the T, molecule which in turn
enters a (frozen tritium) solid. Interaction with the host-
ing molecule and with the surrounding solid changes the
energy of the expelled B electron. For example, the T,
molecule after decay is rearranged into the HeT * molec-
ular ion. Hence the amount of energy carried by the g
electron depends on the final state of the HeT ¥ ion which
can end up in any of its discrete states, or in the (elec-
tronic) continuum. A smaller fraction of the available
decay energy is deposited in the solid via excitations of
the surrounding T, molecules. Therefore, in order to
determine the mass of the neutrino, these molecular and
solid state effects have to be taken into account. The
smaller the neutrino mass, the higher the accuracy re-
quired for the theoretical description of these environ-
ment effects [4].

The problem of the molecular effects has been treated
previously [1-5,11] and the solid state effects (in frozen
tritium) were considered in Ref. [6]. However, the exci-
tations to the electronic continuum have been addressed
previously [7,11] only in a simplified manner. In Ref. [7]
the energies and widths of the two strongest resonances in
the continuum of HeT* have been obtained and a model
of the shakeoff probability density based on the simple
Breit-Wigner formulation has been constructed. It has
been shown that about two-thirds of all continuum exci-

tations concentrate in those two resonances near the ion-
ization threshold of HeT™Y. The resulting distribution
proved to be much different from the one obtained previ-
ously by Martin and Cohen [11] by Stieltjes imaging
technique. Although the Breit-Wigner distribution is be-
lieved to be reliable in the vicinity of the resonances, it
treats the contribution from the scattering background
and the interference effects in a rather oversimplified
way. In the present contribution, we present a first prin-
ciple, ab initio calculation of the probability density for
the shakeoff to the molecular continuum of HeT™t, ex-
tracting it from the imaginary part of the resolvent.

The probability for the excitation to the electronic con-
tinuum of HeT ¥ following the 8 decay of T, can be given
(within the sudden impulse approximation) in terms of
the overlap integral between the initial (ground) state of
T, and the final (continuum) state of HeT *:

P(E) =@ T (E)|Dg*(Eo))| 2. ¢))

Direct evaluation of this expression requires knowledge of
the accurate solutions ®H*T"(E) from the continuum of
HeT*. These final wave functions ought to describe the
doubly excited molecular continuum, together with all
correlational intricacies leading to the presence of reso-
nances. For this reason we have chosen a method which
avoids the explicit calculation of these functions. The
probability distribution is extracted as the imaginary part
of the expectation value of the HeT* resolvent operator
with respect to the ground state of T,. This method has
been applied previously to the calculation of cross sec-
tions for atomic photoionization [12], two-photon ioniza-
tion [13], and inelastic electron scattering on atoms [14].
The method is based on the observation that

P(E)=r""Im{G(E)}, (@)

where G(E) is the (ground state) expectation value
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defined by

G(E)=lim0<d>(;r’|(1;'HeT+—E—ie)_'l(I)Jz). (3)
e—

In the above expression H is the total Hamiltonian of
HeT™* and @ is the ground state of T, (both in the
clamped-nuclei approximation). Introducing the com-
plete eigenstate expansion of the operator H, G(E) can
be written as

_ (@
G =tim ¥ [

where the symbol X [ abbreviates collectively the sum-
mation over the discrete part and integration over the
continuous part of the spectrum of HeTt. Using the
well-known relation [15]

b F(E")
a E'—E—ie

OTzlq)nHeT*xq,;leT + | q)()Tz)

E,—FE—ie

, (4)

lim dE'
e—0
b F(E")
a F'—F

=7>7){ dE’}+i7rF(E), ()

one obtains for £ >0,
(@0 | T HHT " |
G(E) —‘§ En —F
+Pp(G)+ir[(@ T (E) |0g 2(E))| 2,

(6)

where P»(G) denotes the Cauchy principal part of the
integral. Since the first two terms in the above expression
are real, the imaginary part of G (E) gives the probability
density P(E) as shown in Eq. (2). Therefore, this density
can be obtained as the imaginary part of the ground state
expectation value given by Eq. (3), provided that one can
find a meaningful numerical approximation to the resol-
vent operator. If the continuum is discretized by intro-
duction of a finite set of basis functions, the eigenvalue

problem for HeT * is brought to the matrix form
Hc, =E,Sc; , €))

where the ¢, are the column vectors consisting of expan-
sion coefficients in the basis h,

PUE)=x""ImG%E) =n""Im(®o(6*)|[F (8) —E] ~!|dy())
="' Im(U(6*)Do|U8)(H —E) ~'U ~1(8)|U(9)dDy)
=7 "' m{Do|(H —E) ~!|®dg)=7n""ImG(E) =P(E) .

The above relation is valid for any dilation angle 6. In
practical applications 8 is chosen as to (a) expose the res-
onances of interest, and (b) assure the maximal stability
of the probability density, as discussed below. The com-
putation of the probability distribution P(E) has been re-
duced to the solution of the dilated matrix eigenvalue
problems for T, and HeT*. Both calculations have been
performed in the prolate spheroidal coordinates, using the
clamped nuclei approximation (at the T; equilibrium sep-
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(8)

S is the overlap matrix, and H is the matrix of the Ham-
iltonian Hy.r+. The integration over the continuum
given in expression (4) is changed into a discrete sum.
But this straightforward procedure violates the analytical
structure of the probability density which vanishes ac-
cording to

1 (Do| D XD, | D)
P(E)—”Im{g, E—E

@, =hc, ,

} =0, E, real. 9)

However, if the probability density is first continued
analytically by means of the complex coordinate method
[12], its discretized approximation does not vanish,

fo.

Here the functions ®¢ are the solutions to the dilated ma-
trix eigenvalue problem,

o* @ o* [’}
PY(E) =];Im{z (@of |on(@y|o (10)

n E!—E

E? complex .

H(0)cf=EfScf, df=hcf, an

that is obtained from the original one via dilation of the
Hamiltonian H=H .1+,

HO)=UOHU ~'(0), UO)f(r)=e2f(e’), (12)
where @=qa+if is the dilation parameter. The bi-
orthonormal functions ®¢" are obtained from the eigen-
value problem adjoint to the one in Eq. (11). It has been
shown [12-14] that this procedure correctly recovers
various characteristics of the continuous spectrum.

In the present context, the complex coordinate method
can be seen merely as a technique that facilitates the per-
formance of the limit procedure implied by Eq. (4). It
converts a mathematically singular expression into one
that is amenable to numerical computations. The proba-
bility density itself is not influenced by the dilation trans-
formation. Indeed, noting that U(6*)=U%(9) 7' [16]
and using the fact that for a bound state ®(0) =U(8)d,,
it is easily seen that

(13)
(14)
(15)

aration 7=1.4 bohr) and an explicitly correlated basis
set. The details of this calculation were presented in Ref.
[7], where we have also derived the appropriate (for the
elliptical coordinate system) form of the dilation transfor-
mation, that is,

(&,n,0)— (e%&,n,0). (16)

We have also shown that this transformation is consistent
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FIG. 1. Distribution of the probability density (in E, '=1
a.u.”") for the shakeoff to the electronic continuum of HeT*
following the B decay of T,. ——, present work; ——, results
of Martin and Cohen [11], obtained by the Stieltjes imaging
technique. The zero of energy corresponds to the breakup
threshold of HeT*, and our spectrum starts at E=—1.3185
a.u. which is the ionization threshold for HeT*. The g electron
attains its maximal (end-point) energy when the HeT* ends up
in its ground state (here E6'°T+ = —2.9780 a.u.). The excita-
tion energy with respect to that ground state is therefore
reflected as the energy deficit of the B electron relative to the
experimental end point.

with the use of the clamped-nuclei approximation, in the
sense that the so-called outer scaling is not necessary.
Still, however, the direct calculation of the matrix ele-
ments of the complex-dilated Hamiltonian in the explicit-
ly correlated basis set is a very difficult task. For this
reason these matrix elements have been calculated via an
analytic continuation of their values for real dilation, us-
ing the least-squares polynomial technique. A more de-
tailed discussion of this procedure will be given in a
separate publication, and therefore we give here only a
brief sketch of it.

First, a number of standard calculations of the Hamil-
tonian matrix are performed for different values of the
(real) dilation factor a. This can be done exactly via an
inverse scaling of the corresponding nonlinear parameters
in the basis functions. The matrix elements correspond-
ing to different a; values, i =1, ...,N,, are stored. This
amounts to IV, arrays of length M =N(N+1)/2, with N

TABLE I. Basis-set description.

& &2 m m
T, 0.78132 0.30532 0.33600 0.13200
HeT™ (basis 1) 1.29760 0.68240 0.46100 0.00000
HeT™* (basis 2) 1.45200 0.53564 0.22600 0.31080

being the dimension of the basis set. In this calculation
Nq,=17 has been chosen, where a varies between 0.97 and
1.03. Using a simple polynomial least-squares fit, every
configuration interaction matrix element h;>; is ex-
pressed as a polynomial in a:

n
h,-,,~=p,-'f,-(a)=k20cka", amn
where n denotes the order of the polynomial (here n=4).
The matrix representation of the complex-dilated Hamil-
tonian is now available by calculation of the polynomials
pi.j(a) at complex arguments.

Once the complex matrix elements are obtained, the ei-
genvalue problems for T, and HeT ™ are solved, and the
probability density P(E) is calculated according to Eq.
(10). The summation includes all complex eigenvalues of
the dilated HeT * eigenvalue problem. Most of them cor-
respond to the transformed continuous spectrum of
HeT*, while some of them correspond to resonances.
The character of the eigenvalues (resonant or continuum)
can be recognized from their behavior as a function of the
dilation parameter 6, but this distinction is not essential
from the point of view of the probability density calcula-
tion. The interaction between the resonant and non-
resonant (background) contributions is automatically in-
cluded. An important feature of our method is that it
delivers absolute values of P(E), i.e., the probability den-
sity is automatically normalized.

The resulting probability density P(E) is presented in
Fig. 1. In this calculation 100 basis functions for the T,
molecule and 200 basis functions for the HeT * have been
used. The nonlinear parameters in the basis sets are list-
ed in Table I. These values have been established by op-
timizing the real stabilization graph. The investigation of
the stability of the resonant roots with respect to the com-
plex scaling parameter 6 allowed the calculation of posi-
tions and widths of the resonances of HeT™, given in
Table II.

TABLE II. Resonance of HeT*.

Resonance Position Width I' Height Transition Basis set
No. (in a.u.) (in a.u.) (ina.u. ™) probability No.
1 —0.688 14 0.02429 0.7600 0.029 1
2 —0.45115 0.01876 1.6289 0.048 1
3 —0.20993 0.00509 0.0250 0.0002 2
4 —0.18514 0.00375 0.3395 0.002 2
5 —0.17711 0.00294 0.6496 0.003 2
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Using 100 energetically lowest lying states of HeT ™
the probability density spectrum has been calculated for
different values of the complex scaling parameter 6. Be-
cause of the finite basis set, the spectrum is not totally 6
independent. To receive the final spectrum we have used
the criterion of its optimal stability [dP(E)/d6=min]
implemented as follows: In the region between the ion-
ization threshold and the lowest lying resonance the range
of angles giving a most stable spectrum has been chosen.
In the following resonant region (containing the four
lowest lying resonances) the scaling factor 0 has been
chosen so as to achieve the best stability of the resonant
eigenvalues. The region starting from —0.19 a.u. is rep-
resented by the scaling factor that represents the fifth res-
onance and the background in a most stable way. The
area under the curve is equal to 0.1277 in the displayed
energy range (without any additional normalization),
compared to 0.1348 obtained by Martin and Cohen [11].
Their spectral distribution has been obtained by Stieltjes
imaging, and shows much less pronounced structure than
ours. Our method allows ab initio, first principles calcu-
lation of absolute transition probabilities in the continu-
um, including both the background scattering contribu-
tion and the fine structure of the spectrum (including the
line shapes) caused by existence of resonances.

From the displayed spectrum and the values of the
transition probability one can clearly see the importance
of the five lowest lying resonances (see Table II) that ab-
sorb most of the continuum excitations. In addition to
the dominant contributions from the 'St (o?) and
(2030) resonances, also contributions from higher lying,
closely spaced (and therefore strongly interacting) reso-
nances are observable. Interestingly, we notice very
sharp resonances of bound-state character at 75 eV above
the ground state of the HeT ™ molecular ion, i.e., in the
exact vicinity of the “missing spectral component” ob-
served by Weinheimer et al. [10] at 75 eV below the end
point of the experimental B spectrum.
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