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Scattering Operator for Elastic and Inelastic Resonant X-Ray Scattering
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We show that, in the fast collision approximation, the scattering operator for resonant x-ray
scattering can be expressed in terms of simple spin-orbital moment operators MC" (I, s) of the
valence shell involved in the resonance. This theory is applicable to the analysis of a broad range
of resonant x-ray elastic and inelastic scattering and absorption experiments involving rare earth,
actinide, and transition elements.

PACS numbers: 75.25.+z, 61.10.Dp, 76.20.+q, 78.70.Ck

From magnetic structure determination to critical scat-
tering, resonant x-ray magnetic scattering has become
a powerful probe of magnetism complementary to mag-
netic neutron scattering [1—3]. But important questions
remain, which we address in this Letter: how is resonant
x-ray magnetic scattering related to the atomic spin and
orbital moments, and what are the essential differences
between neutron and resonant x-ray magnetic scattering?

The neutron magnetic scattering operator f„ is pro-
portional to the Fourier transform of the magnetic mo-
ment density, f„oc p„(K x [L(m) + 2S(r)] x K}, and
neutron scattering studies have been the chief means
for magnetic structure and excitation spectra determi-
nation in magnetic materials [4]. Also the nonresonant
x-ray magnetic scattering operator has the simple form

f~ oc L(r) A+ S(r) B, again linear in L(r) and S(r),
allowing similar magnetic structure information to be ob-
tained as from neutron scattering [5], although f is
quite small, typically = 0.0lrp, in comparison to f„=rp
for neutron scattering.

Near absorption edges, however, very large resonant
enhancements to magnetic sensitive x-ray scattering oc-
cur, with amplitudes ranging from O. lrp to 100rp [1,2).
This strongly enhanced "magnetic" x-ray scattering is
actually electric multipole resonance scattering with the

magnetic sensitivity arising from the effects of exchange
and spin-orbit correlation [2]. It is not at all obvi-
ous that the resonant scattering operator F~L, is sim-
ply related to the atomic orbital and spin moments,
as is the case for neutron and nonresonant x-ray mag-
netic scattering. However, we show that for the impor-
tant case of "quasielastic" scattering, if the "fast colli-
sion approximation" can be made, then indeed F@L oc

o T~L (ef, kf, ep, kp) M~L (1, s), where the M~L (1, s)(k) (k} (A:)

are kth rank spin-orbital moments of the valence shell
involved in the resonance. The odd-order moments are
odd under time reversal T and hence purely magnetic,
while the even-order moments are even under T, and
include the charge multipole moments (giving nonmag-
netic Templeton eKects). Coherent resonant x-ray scat-
tering then determines correlations between these mo-
ments, and gives important information, not obtainable
from neutron and nonresonant x-ray magnetic scattering.

Recently, Thole et al. [6] and Carra et al. [7] have given
elegant theoretical discussions of x-ray circular dichroism
near the absorption edges in transition metals and rare
earths. Here we extend these considerations to treat elas-
tic and inelastic resonant x-ray scattering.

Near resonance the pure electric multipole scattering
amplitude is given by [2)
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where QLM = er YLM is the usual electric multipole
moment operator, a and at are annihilation and creation
operators for an (nl2) electron in the valence shell, the
operators b and bt for an (n, liji) electron in the core
shell.

I I) =I (nil)+ (n, liji) Qo) is the excited state
with an electron excited to the partially filled valence
shell (nl2) leaving a hole in the core shell (n, li ji). I' is
the width of the excited state. Here we restrict our at-
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tention to "quasielastic" scattering, where the final state
I @f) corresponds to the same configuration as the ini-
tial state

I gp), i.e. , all core levels filled and the same
number of valence shell electrons as initially, but not
necessarily the same state, e.g. , I (nlrb) L, S, J, M)

I
(nl2) I', S', J', M') transitions may occur, where v is

the number of electrons in the (nl2) valence shell.

to a very good approximation, and the current operator is given by
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FzL, Eq. (1) can be expressed in terms of spherical tensors,
2L k
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k=o q= —k

(4)
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A great simpli6cation for the structure of the operator
Fq (u) occurs for the important cases where either the
width I' or the deviation Au = EI —Ee —bc' from reso-
nance is large compared to the splitting 4 of the excited
state configuration. Then El can be replaced by El in
Eq. (2), and the energy denominator taken outside the
summation. In this case the F~~ (w)'s factor into a single
scalar resonance factor R [Eq. (8)] and multipole moment
operators Mq which are simple single-particle operators(k)

summed over the valence electrons [see Eq. (16)]. This is
a "fast collision" approximation: When the core electron
is initially injected into an empty orbital of the valence

R(liji., I;/2) = K(/iL/2) I (R„t,(r) I
r

Ii(/iL/2) = (e /A +')({2/i+ l)(2I. + 1)

!
shell, then generally it and the core hole exert torques
on each other and the other valence electrons, causing
changes in the state of these electrons. The rate at which
these changes take place, however, is determined by AEI,
and to a good approximation they can be neglected if
AEIT is small, where T =I Ace —iI'/2

I
measures the

collision duration.
Making the fast collision approximation,

FL'M.
, LM(~) = R(/ij i, I; /2)+LM', LM(/1/1 /2) (7)(e)

where the dimensionless "reduced resonance scattering
amplitude" R(li ji, I; /2) is

I R„.t„,(r)) !2 /[EI —Eo —ku —iI'/2], (8)
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Since the core states are filled in the initial and final states, (gf I
b. , a, i, bf, , I Qc) = 6', {Qf I

xa ~ a~t, ~ I $0). The operators at, ~ a~ ~ can be expressed by Judd's spin-orbit double tensor operators

W ~m [8]. We define double tensor operators for "hole" multipole moments
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[W „' = W~~ —+2(2/2+ 1)6„O6't o]. The operators W„' oc p,.
&t [s„"V (1)],, where V~'~(/, ) is the lth rank

spherical tensor of 1, , which is defined V~i"l(1) = Ci~„ i „/„Vi"„l(1), and V„ l(1) = l„.—(-, ')"'" '
SLM, LM can now be expressed in terms of W „',and, utilizing the theorems of Yutsis, Levinson, and Vanagas [9]

to evaluate the Clebsch-Gordan sums,
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where W is the spin-orbit coupled tensor operator, W ' = P„Ci„.i
—(1,&)k . —(1 ~)
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Now Fq (w)@I„Eq. (6), becomes
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F "
(0j)~L, ——R(l ij~, L; l2) M " (l ij~, L; l 2) .

2I +i
Substituting from Eq. (13) into Eq. (4), we finally obtain

21 k
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For the important case of El resonant scattering,

F@i(ef,kf ', ep, kp) = 2ApR(liji, 1; l2)[(ef . ep)M (liji, 1; 12) —(i/v 2)(e~ x ep)M (liji', 1; l2)

V (ef (g) e())M (liji, 1; 12)].

From the definition of W ', the operators M( )(liji, 1; l2) are
—(K,s}k k
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~
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(14)

(16)

These fast collision results should be rather good for
resonant scattering at the L2, L3 edges in the rare earths
and actinides, as well as for the M4, M5 edges in the ac-
tinides, for which 6 I' and the splitting is not resolved
(for example, for the rare earth L2, Ls transitions to the
4f shell, the splitting 6 =1—5 eV, while I' & 5 eV).
However, for the M4, M5 transitions in the rare earths,
6 & I' and the multiplet structure can be resolved. The
higher-order contributions can be included with multiplet
calculations of the type performed by Thole et al. [11],
but these higher-order corrections will have a more com-
plex operator form. The simplicity of the fast collision
approximation can be regained by tuning off resonance
so that 4 && A~. Even off resonance, the M4, Ms scat-
tering amplitudes will be appreciable because they are
=(10—100)rp at resonance.

We now give an important generalization of these re-
sults: Some resonant magnetic effects do depend explic-
itly on the separation of EI into spin-up and spin-down

M(')(1», ;I;1,) = -" '~2) V(')(I, ) ~ p2) V&')(s, g I,)+~2) V&')[s, g V(')(I, )].2lg+ 1
i6lg i6lg ill&

Here Vq (T(") U(")) = P„C„"q»T„"U . . The co-
efficients o. , P, and p are given in Table I. The operator
sums are over the (nl2) electrons in the valence shell.

Using the Wigner-Eckart theorem, l(&+i) V~ (1)

rl Vq (r), and s —
2I&&'&

'
i))+ = rl [s —3(s r) r], where
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For E2 transitions M~ ~, M~ ~, and M~ ~ will be given
again by Eq. (16) except for difFerent coefficients (a, P,
and p), and in addition F+2 [see Eq. (14)] will have M(s)
(octupole) and M( ) (hexadecapole) moment operator
contributions [10].

Equation (14) relates the scattering operators F~r, to
the spin-orbit multipole moment operators M~, and
thus provides a means to determine the valence shell
properties through resonant scattering, and, via the opti-
cal theorem, absorption. Because of their different angu-
lar dependences, the various moment contributions M~
to the scattering and absorption processes can be selected
experimentally.

TABLE I. Coefficients in Eqs. (16) and (17). Here 6j(k)=,and gj(l, k) = 12 l2
1 1 k

(2L1+1) ~
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bands, and upon the m, dependence of the current matrix elements. This is usually true for transitions to d bands,
and, in particular, is the case for the first observed resonant magnetic scattering (2psgq to Gd in Ho) [I]. This is not
described by the scattering operator as given by Eq. (11).

We assume that there is an exchange splitting 6 between the spin-up and spin-down valence states, Etio
AFlp ~ 2, and different radial matrix elements to these states, (r~)+ = (r+)(I + 6/2). Then for El transitions, the

rnultipole moments M (&i) become [10](s)

jy+ 2 e Z6'
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where z is the unit vector of the local field direction,
0&') = O(t') —O($), and the coefficients o., P, and p
are given in Table I. Here 6 =

&(x i) &
X = [AElo-

/iio]/(I'/2), e = 5+E, and 6 (( 1, but Z is not necessarily
small.

Now F@z is obtained by substituting M q from Eq.
(17) into Eq. (15) and replacing R in Eq. (15) by B/(I—
Z ), where R is determined by the mean value of the
radial matrix element and the mean value of the energy
AElp in the resonance denominator [see Eq. (8)]. This
is the form of F@q applicable to the p —+ d resonances in
the transition elements, rare earths, and actinides.

For the example of the Ho 2@3 —+ 5d resonance, we
have found that the dominant contribution to the linear
magnetic term M~ ~ comes from the difference 6 between
the spin-up and spin-down radial matrix elements. Inclu-
sion of this contribution, as given by Eq. (17), reverses
the sign of Mo, and is necessary to obtain agreement
with the experimental observations [12].

In summary, we have shown that the scattering am-
plitude operator F for resonant x-ray scattering can be
expressed in terms of simple spin-orbital moment op-
erators M@I (I, s) of the valence shell involved in the(k)

resonance. This holds for the important case of quasi-
elastic scattering in the fast collision approximation. The
odd-order moments are purely magnetic, while the even-
order moments include the charge multipole moments

Yz (r, ) of the valence shell, as well as magnetic
contributions. The simple relation between F and the
spin-orbital moments M( ) (I, s) is of considerable impor-
tance for the interpretation of resonant x-ray scattering
experiments. Measurements on the Bragg peaks then

will determine the thermal expectation values of these
moments, while the diffuse scattering may be analyzed
to obtain the moment-moment correlations.
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