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Fusion Cross Section from Chaotic Scattering
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Dynamics of scattering in the classical model of a-cluster nuclei is studied in terms of transport
theory. Behavior typical for hyperbolic chaotic scattering is found, which results in an exponential
decay of the survival probability. This allows a determination of the unitarity deficit of the S matrix
and thus the probability for compound-nucleus formation.
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Recent progress in understanding the chaotic aspects
of nonlinear dynamical systems has revitalized interest
in the properties of compound nuclei. Indeed, because
of the richness of experimental data the compound nu-
cleus provides a very useful laboratory for studying the
correspondence between classical and quantum dynam-
ical systems. In fact, the first empirical evidence sup-
porting the connection between classical chaos and the
fluctuations characteristic of the Gaussian orthogonal en-
semble comes from the study of compound nucleus res-
onances [1]. What makes the problem even more inter-
esting is that, as an open phase-space phenomenon, it
brings up the concepts of transient chaos associated with
chaotic scattering [2]. Semiclassical considerations for
the energy autocorrelation function Cj; of an S-matrix
element, Cyj(€) = (S7;(E)Sij(E + €))ap, then make a
link between the quantum and the classical pictures [3].
We have

Cis(e) ~ / dt (P (B, t)ap expliet/n), (1)

where P;;(E,t) is the classical survival probability for the
system to remain in the interaction region with respect
to a j — ¢ transition and ( ) aog denotes averaging over a
quantum mechanically large but classically small energy
interval AFE.

Chaotic scattering connected with the existence of only
unstable periodic trajectories (hyperbolic chaotic scatter-
ing) results in an exponential decay: P(E,t) o< exp(—~t).
For AE sufficiently small on the classical energy scale, so
that the energy variation of v can be neglected, the corre-
sponding autocorrelation function has a Lorentzian form:
C(e) ~ h/(e+ ihy). On the quantum level this is the re-
gion of Ericson fluctuations [4]. Thus, v can be identified
with the correlation width I'corr . In certain situations,
for instance, in the region close to the ground state, the
classical phase space may reveal more solid structures:
the Kolmogorov-Arnold-Moser (KAM) surfaces. Then
a power law, P(E,t) o t™%, is expected. Accordingly
[5], C(e) = C(0) + C1(e/h)*~1 which, for instance, for
z < 2 leads to the cusp shape typical for isolated res-
onances. The survival probability P(E,t) reflecting the
classical transport properties of the system (degree of
mixing, fractal structures, and stability) thus establishes
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a fundamental link between the structure of the underly-
ing classical phase space and the experimental, quantum
mechanical observables. P(FE,t) also defines that part
of the incident flux which spends a long enough time
in the interaction region so that the stochastic fluctua-
tions characteristic of the compound nucleus appear. In
other words, P(FE,t) provides an estimate for the unitar-
ity deficit of the average S matrix and thus determines
the transmission coefficients [6].

Such a new kind of approach is of basic importance
for a global understanding of a nucleus as a complex dy-
namical system. This points to the need of more quanti-
tative study in realistic nuclear models. However, when
talking about the classical limit of the nuclear system,
which is at the heart of the related considerations, one
has to keep in mind that the nucleus is a collection of
fermions. It is not fully clear what is a corresponding
classical counterpart. More manageable in this sense are
the models based on the a-cluster effects. There exists
evidence that such clustering effects define the most rel-
evant degrees of freedom of light nuclei in the low energy
region. For all these reasons, the model in the present
study is specified as a classical limit of the time depen-
dent cluster model [7]. The elementary constituents are
thus the pointlike alpha particles, and the dynamics is
treated classically. The two-body interaction between
the alpha particles is extracted from an adiabatic time
dependent Hartree-Fock calculation [8]. The correspond-
ing effective potential has a van der Waals—type form;
i.e., it includes long-range weak repulsion, intermediate-
range attraction, and short-range strong repulsion [9].
The model of this kind has been successful, for instance,
in describing the nuclear fragmentation effects [10]. Since
many effective interactions in physics have a qualitatively
similar form the present analysis can be assigned a more
general meaning.

The appearance of chaos in classical nuclear scattering
is expected to be a generic effect. Already a global defor-
mation of nuclei introduces strong irregularities in the de-
flection angle as a function of the impact parameter [11].
The a-12C scattering in a simplified configuration (the
target 12C composed of three alpha particles frozen in
the plane at the corners of an equilateral triangle) shows
[12] irregularities developing self-similar structures with

2867

© 1993 The American Physical Society



VOLUME 71, NUMBER 18

PHYSICAL REVIEW LETTERS

1 NOVEMBER 1993

the well defined fractal dimension and the dynamics is
governed by positive Lyapunov exponents. Analyzed in
the language of the transport theory [13] already such
scattering in most cases leads to an exponential decay
of the corresponding survival probability. This feature
is well understood in terms of the fractal dimension and
the Lyapunov exponent [12].

Here, for more realistic nuclear physics estimates, we

consider the target consisting of three interacting alpha
particles with all the degrees of freedom released. Fur-
thermore, the target to be interpreted as a real 12C nu-
cleus is defined as a statistical ensemble. Each configu-
ration is constructed so as to ensure the proper binding
energy of the 2C nucleus and its total linear and angu-
lar momentum zero. Within these constraints all phase
space coordinates are chosen uniformly. This means that
any quantity f is evaluated by integrals

/dn dradrs /dp1 dp2 dps3 5(i ri)6(g pi)(?(EB - ip?/?m — V(ry,ro, rg))é(g li) f(ri,...,p3), (2)

i=1

where r;, p;, and [; denote the position, momentum, and
angular momentum of the ith alpha particle, with respect
to the 12C center of mass. The delta functions over the
linear momenta and energy are evaluated by the method
described in Ref. [10] and samples with angular momen-
tum greater than 0.05 /4 rejected.

Numerical scattering experiments of the projectile al-
pha particle on the so-constructed 2C nucleus are per-
formed for given values of the bombarding energies and
impact parameters. In this way one obtains an ensem-
ble of trajectories connected with various internal con-
figurations of the target. This determines the survival
probability P(t) measured as a ratio of events N(t) such
that all the particles still remain in the interaction re-
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FIG. 1. (a) The ratio of trajectories surviving up to the
time t [P(t)] for the system a-'2C for various initial relative
angular momenta ! at the projectile energy of 5 MeV. (b)
Transmission coefficients for the same system calculated by
extrapolating P(t) backwards in time. The angular momen-
tum and energy dependencies are indicated.
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gion up to time ¢, to the total number of collisions Ng.
As an example, Fig. 1(a) presents the resulting P(t) for
E = 5 MeV and for four values of . Typically, Ny is of
the order of 10* in each case. Asymptotically, in all the
cases shown, the decay is exponential, which reflects the
existence of hyperbolic instabilities. However, for cen-
tral collisions essentially all the trajectories are governed
by this kind of dynamics, while in more peripheral cases
only a small fraction of them are. With increasing [ the
dynamics becomes dominated by fast, nontransient pro-
cesses. What is also interesting is that the slope (and
thus the correlation width I'cor,) of the exponential com-
ponent systematically decreases with increasing .

Representing the survival probability asymptotically
for given [ as

B(t) =T exp('_rf:orrt) (3)

allows us to evaluate what fraction of the incident flux
decays exponentially and, consequently, to determine the
transmission coefficients 7; for a compound nucleus for-
mation. Such a prescription is intuitively natural and
consistent with the more formal considerations [6]. Ex-
amples of the so-determined transmission coefficients 7}
are presented in Fig. 1(b). As expected, they decrease
with angular momentum and are stretched to larger ! for
higher energy.
The fusion cross section expressed by 7} reads

us

Figure 2 presents o as a function of energy (solid line)
for the considered system of o-12C. It initially rises and
then begins to fall at about 7 MeV. For energies higher
than 9 MeV the exponential form of the decay is less
obvious and the above procedure becomes inapplicable.
As a further generalization of our system we consider
the collision 12C-12C. The projectile has been constructed
in the same way as the target: the phase space has been
sampled uniformly for initial configurations, preserving
the binding energy and total linear momentum and en-
suring angular momentum vanishing. As previously, the
decay rates and transmission coefficients have been calcu-

(4)
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FIG. 2. Calculated fusion cross section (solid line) as a
function of energy for the system a-'?C using Eq. (3). The
dashed line includes the stochastic force.

lated for various impact parameters as well as bombard-
ing energies. The resulting fusion cross section corre-
sponds to the solid line in Fig. 3. Our exploratory model
calculation does not pretend to reproduce the experimen-
tal data already at this stage. Nevertheless, as compar-
ison with the existing experimental data (collected from
Refs. [14-16]) shows, it properly reproduces the general
tendency especially at low energies where the model is
expected to account for the most important degrees of
freedom. The fact that the calculated fusion cross sec-
tion systematically overestimates the data in this energy
region seems to partly originate from a too large radius
of our model 2C nucleus. With the interaction of Ref. [8]
it exceeds the empirical radius by 4.6%, which should re-
sult in about 10% enhancement of the cross section. Still,
the difference between our calculated result and the data
is larger than 10%. Taking this correction into account
our result appears consistent with the calculations based
on realistic phenomenological models (e.g., Ref. [17]). It
is also interesting to note that those calculations [17],
overestimating the measured fusion cross section for the
120.12C system, provide a very good description of other
systems.

At higher energies, on the other hand, the “chaos de-
termined” fusion cross section drops down too fast. This,
actually, is expected because at higher energies our model
certainly does not account for all physical degrees of free-
dom and this must suppress the amount of instabilities
as compared to the real physical process. That this is
really a reason is also suggested by a calculation incor-
porating the stochastic force of Ref. [10]. Such a force is
assumed to globally account for an internal structure of
the alpha particles. It is activated when any two alpha
particles during the collision process come to a distance
smaller than the position of minimum in the a-a po-
tential and results in a random change of direction of
their relative momentum. The procedure does not affect
the total energy and momentum of the entire system.
A similar stochastic force recently incorporated [18] in
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FIG. 3. Theoretical fusion cross sections for the system
120.12C without (solid line) and with (dashed line) the
stochastic force. The data are from Refs. [14] (full circles),
[15] (full squares), and [16] (triangles).

the molecular dynamics approach has been a crucial in-
gredient in a successful description of nuclear fragmen-
tation effects. The results of our calculation including
the stochastic force are indicated in Figs. 2 and 3 by the
dashed lines. The exponential decay still holds and the
resulting enhancement of the cross section at higher en-
ergies originates essentially from an increase of the trans-
mission coefficients for larger angular momenta.

The analysis presented in this Letter is the first quan-
titative attempt to explore the role and the consequences
of classical chaos on physical observables in the context
of the compound nucleus formation. It provides further
arguments that the semiclassical approach can be consid-
ered [2] an interesting alternative to quantum stochastic
approaches based on the random matrix model [19]. A
particularly nice feature of the treatment discussed here
is that it allows a direct study of the time scales involved
and the magnitude and mechanism of competition be-
tween the fast and the slow processes for different initial
conditions.
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